Readings: Learning

EDUCATION, COGNITION, THE BRAIN

 READINGS: LEARNING 
________________________



Books


General
  • Gopnik, A., Meltzoff, A., Kuhl, P. (2007). Comment pensent les bébés. Le Pommier
  • Gopnik, A. (2012). Le bébé philosophe. Le Pommier
  • Goswami, U. (2008). Cognitive development. The learning brain. Psychology Press.
  • Houdé, O. (2013). La psychologie de l'enfant. PUF.
  • Houdé, O., Leroux, G. (2013). Psychologie et développement cognitif. PUF.
  • Houdé, O. (2014). Le raisonnement. PUF.

SCIENCE LEARNING AND TEACHING

Books
  • Carruthers, P., Stich, S., Siegal, M. (2002). The cognitive basis of science. Cambridge : Cambridge University Press.
  • Giere, R. (1988). Explaining science. Chicago/London : The University of Chicago Press.
  • Heintz, C. (2007). Scientific cognition and cultural evolution. PhD Thesis, EHESS, Paris.

Papers

Curiosity
  • Aristote. Métaphysique
  • Augustin. Confessions
  • Bacon, F. (1605). The advancement of learning. London
  • Baillargeon, R. (1994). How do infants learn about the physical world? Current Directions in Psychological Science, 3, 133-140. 
  • Ball, P. (2012). Curiosity : How science became interested in everything. London : Bodley Head.
  • Berlyne, D. E. (1950). Novelty and curiosity as determinants of exploratory behavior. British Journal of Psychology, 41,68-80.
  • Berlyne, D. E. (1954). A theory of human curiosity. British Journal of Psychology, 45,180-191.
  • Berlyne, D. E. (1960). Conflict, Arousal, and Curiosity. New York: McGraw-Hill.
  • Berlyne, D.E. (1967). Arousal and reinforcement. In D. Levine (Ed.), Nebraska symposium on motivation (Vol. 15, pp. 1–110). Lincoln: University of Nebraska Press.
  • Bonawitz, E.B., Shafto, P., Gweon, H., Goodman, N.D, Spelke, E., Schulz, L.E. (2011). The double-edged sword of pedagogy: Instruction limits spontaneous exploration and discovery. Cognition, 120, 3, 322-330.
  • Buisson, F.  (1911). Le Nouveau Dictionnaire de pédagogie et d’instruction primaire  (édition 1911) 
  • Cicéron. De finibus bonorum et malorum.
  • Cohen, L.B. (2001). Uses and Misuses of Habituation: A Theoretical and Methodological Analysis. Symposium paper presented at the Society for Research in Child Development Meeting, Minneapolis.
  • Fidler, A.E., van Oers, K., Drent P.J., Kuhn, S., Mueller, J.C., Kempenaers, B. (2007). Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proceedings of the Royal Society London B 274, 1685-1691.
  • Gottlieb, J., Oudeyer, P-Y., Lopes, M., Baranes, A. (2013). Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends in cognitive science, 17, 11, 585-593.
  • Hobbes, T. (1651). Leviathan. 
  • Hume, D. (1748). An enquiry concerning human understanding.
  • Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., & Wang, J. T. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20, 8, 963–973.
  • Kashdan, T.B., Rose, P. & Fincham, F.D. (2004). Curiosity and exploration : facilitating positive subjective experiences and personal growth opportunities. Journal of personality assessment, 82, 291-305.
  • Kashdan, T.B., Gallagher, M.W., Silvia, P.J., Winterstein, P.B., Breen, W.E., Terhar, D., Steger, M.F. (2009). The Curiosity and Exploration Inventory-II: Development, Factor Structure, and Psychometrics. Journal of research on personality, 43, 6, 987-998.
  • Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children's scientific thinking. Science, 333, 971–975.
  • James, W. (1890). Principles of psychology. New York: Holt. 
  • Jepma, M., Verdonschot, R., van Steenbergen, H., Rombouts, S., & Nieuwenhuis, S. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers In Behavioral Neuroscience, 6, 5.
  • Jirout, J. (2011). Curiosity and the development of question generation skills. AAAI Fall Symposium (FS-11-04).
  • Jirout, J. & Klahr, D. (2012). Children’s scientific curiosity: in search of an operational definition of an elusive concept. Developmental Review, 32, 2, 125-160.
  • Litman, J.A. (2005). Curiosity and the pleasures of learning: Wanting and liking new information. Cognition and Emotion, 19, 6, 793-814.
  • Litman, J.A. & Spielberger, C.D. (2003). Measuring epistemic curiosity and its diversive and specific components. Journal of personality assessment, 80, 75-86.
  • Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116, 75-98.
  • Muentener, P. & Schulz, L. (2012). What doesn’t go without saying: Communication, induction, and exploration. Language, Learning, and Development, 8, 61-85.
  • Panksepp, J. (1998). Affective Neuroscience: The Foundations of Human and Animal Emotions. New York: Oxford University Press.
  • Panksepp, J. (2010). Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression. Dialogues in clinical neuroscience, 12, 4, 533-545.
  • Pearson, P. (1970). Relationships between global and specific measures of novelty seeking, Journal of Consulting and Clinical Psychology, 34, 199-204.
  • Plutarque. De la curiosité.
  • Schulz, L.E., Bonawitz, E.B. (2007). Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Developmental psychology, 43, 4, 1045-1050.
  • Spelke, E., Breinlinger, K., Macomber, J., Jacobson, K. (1992). Origins of knowledge. Psychological Review, 99, 4, 605-632.
  • Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.
  • Spielberger, C.D., & Starr, L.M. (1994). Curiosity and exploratory behavior. In H.F.  O’Neill & M. Drillings (Eds.), Motivation (221-243). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
  • Thomas d’Aquin. Summa Theologica.
  • Tennant, N. (1995). Paradoxes of pure curiosity. Theory and decision, 18, 3, 321-330.
  • Zuckerman, M., Eysenck, S. B. J., & Eysenck, H. J. (1978). Sensation seeking in England and America: Cross-cultural, age, and sex comparisons. Journal of Consulting and Clinical Psychology, 46, 1, 
Learning mechanisms: exploration, experimentation, causal reasoning, analogical reasoning
  • Chen, Z., Sanchez, R., & Campbell, T. (1997). From beyond to within their grasp: Analogical problem solving in 10- and 13-month-olds. Developmental Psychology, 33, 790-801.
  • Cohen, L. & Oakes, L. (1990). Infant perception of causal event. Cognitive development, 5, 193-207.
  • Cohen, L. & Oakes, L. (1993). How infants perceive a simple causal event. Cognitive psychology, 29, 421-433.
  • Cook, C., Goodman, N. D., & Schulz, L. E. (2011). Where science starts: Spontaneous experiments in preschoolers' exploratory play. Cognition, 120, 341-349.
  • Dunbar, K. (2000). What scientific thinking reveals about the nature of cognition. In Crowley, K., Schunn, C.D., & Okada, T. (Eds.) Designing for Science: Implications from Everyday, Classroom, and Professional Settings. LEA. Hillsdale: NJ.
  • Dunbar, K. (2000). The analogical paradox: Why analogy is so easy in naturalistic settings, yet so difficult in the psychology laboratory. In D. Gentner, Holyoak, K.J., ,& Kokinov, B. Analogy: Perspectives from Cognitive Science. MIT press. Cambridge: MA.
  • Gentner, D., Holyoak, K.J., Kokinov, B. (Eds.) (2001). The analogical mind: perspectives from cognitive science. Cambridge, MA: MIT Press.
  • Gentner, D. & Smith, L. (2012). Analogical reasoning. In V. S. Ramachandran (Ed.), Encyclopedia of Human Behavior (2nd Ed.) pp. 130-136, Oxford: Elsevier.
  • Gopnik, A. (1996). The scientist as a child. Philosophy of science, 63, 4, 485-514.
  • Gopnik, A. (2004). Finding our inner scientist. Daedalus 133, 1, 21-28.
  • Gopnik (2010). How babies think. Scientific American, 76-81.
  • Gopnik, A. (2012). Le bébé philosophe. Paris: Le Pommier.
  • Gopnik, A.  (2012). Scientific thinking in young children. Theoretical advances, empirical research and policy implications. Science, 337, 6102, 1623-1627.
  • Gopnik, A. & Glymour, C. (2002). Causal maps and Bayes nets: A cognitive and computational account of theory-formation. In P. Carruthers, S. Stich, M. Siegal (Eds.), The cognitive basis of science. Cambridge: Cambridge University Press. 117-132.
  • Gopnik, A., Meltzoff, A.N., & Kuhl, P.K. (2007). Comment pensent les bébs? Paris: Le Pommier. 
  • Gopnik, A. & Sobel, D. (2000). Detecting blickets: How young children use information about novel causal powers in categorization and induction. Child Development, 71, 5, 1205-1222.
  • Gopnik, A., Sobel, D. M., Schulz, L. E., & Glymour, C. (2001). Causal learning mechanisms in very young children: Two-, three-, and four-year-olds infer causal relations from patterns of variation and covariation. Developmental Psychology, 37, 620–629.
  • Gopnik, A., Glymour, C., Sobel, D.M., Schulz, L.E., Kushnir, T., Danks, D. (2004). A theory of causal learning in children: causal maps and Bayes nets. Psychol. Rev., 111, 3–32.
  • Goswami, U. (1991). Analogical Reasoning: What develops? A review of research and theory. Child Development, 62, 1-22.
  • Goswami, U. (1996). Analogical reasoning and cognitive development. Adv Child Dev Behav, 26, 91-138.
  • Goswami, U. (2008). Cognitive Development: The Learning Brain. Psychology Press, Taylor & Francis.
  • Goswami, U. & Brown, A.L. (1989). Melting chocolate and melting snowmen: Analogical reasoning and causal relations. Cognition, 35, 69–95.
  • Heider, F. & Simmel, M. (1944). An experimental study of apparent behaviour. American Journal of Psychology, 13.
  • Hofstadter, D., & Sander, E. (2013). L'Analogie : cœur de la pensée, Paris: Odile Jacob.
  • Holyoak, K.L., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press.
  • Kurtz, K, Miao, C.H., Gentner, D. (2001). Learning by analogical bootstrapping. Journal of the learning sciences, 10, 417-446.
  • Kushnir, T. & Gopnik, A. (2007). Conditional probability versus spatial contiguity in causal learning: Preschoolers use new contingency evidence to overcome prior spatial assumptions. Developmental psychology, 43, 1, 186-196.
  • Kushnir, T., Xu, F. & Wellman, H. M. (2010). Young children use statistical sampling to infer the preferences of others. Psychological Science, 21, 1134- 1140.
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.
  • Leslie, A.M. (1984). Spatiotemporal continuity and the perception of causality in infants. Perception, 13, 287-305.
  • Leslie, A.M. & Keeble, S.  (1987). Do six-month-old infants perceive causality. Cognition, 25.
  • Michotte, A. (1946). La Perception de la Causalite. Louvain: Institut Superieur de Philosophie. 
  • Nersessian, N. (1984). Faraday to Einstein. Constructing meaning in scientific theories. New York: Spinger.
  • Newman, G., Choi, H., Wynn, K., Scholl, B. (2008). The origins of causal perception: Evidence from postdictive processing in infancy. Cognitive psychology, 57, 262-291.
  • Penn, D., & Povinelli, D. (2007). Causal cognition in human and non-human animals: A comparative, critical review. Annual Review of Psychology, 58, 97-118.
  • Schlottmann, A., Surian, L. (1999). Do 9-month-olds perceive causation-at-a- distance? Perception, 28, 9, 1105–1113.
  • Scholl, B. J., & Tremoulet, P. (2000). Perceptual causality and animacy. Trends in Cognitive Sciences4, 8, 299-309.  
  • Schulz, L. E., & Gopnik, A. (2004). Causal learning across domains. Developmental Psychology, 40, 162–176.
  • Schulz, L.E., Bonawitz, E.B. (2007). Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Developmental psychology, 43, 4, 1045-1050.
  • Schulz, L., Gopnik, A., & Glymour, C. (2007). Preschool children learn about causal structure from conditional interventions. Developmental Science, 10, 3, 322.
  • Sobel, D. M., Tenenbaum, J. B., & Gopnik, A. (2004). Children’s causal inferences from indirect evidence: Backwards blocking and Bayesian reasoning in preschoolers. Cognitive Science, 28, 303-333.
  • Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence. Child Development, 62, 753–766.
  • Tomasello, M. & Call, J. (1997). Primate Cognition. Oxford: Oxford University Press.
  • Wagemans, J., Van Lier, R., & Scholl, B. J. (2006). Introduction to Michotte's heritage in perception and cognition research. Acta Psychologica, 123, 1-2, 1-19.  
  • Xu, F. & Garcia, V. (2008). Intuitive statistics by 8-month-old infants. PNAS, 105, 13, 5213-15215.
  • Zimmermann, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental review, 27, 172-223.
Learning mechanisms: social learning
  • Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “ theory of mind” ? Cognition, 21, 1, 37–46.
  • Battro, A. (2010). The teaching brain. Mind, brain, and education, 4, 1, 28-33.
  • Battro, A., Calero, C.I., Goldin, A.P., Holper, L., Pezzatti, L., Shalom, D.E., Sigman, M. (2013). The cognitive neuroscience of the teacher-student interaction. Mind, brain, and education. 7, 3, 177-181.
  • Bloom, P. (2004). Descartes’ babyHow the science of child development explains what makes us human. New York: Basic Books.
  • Bloom, P. (2013). Just Babies: The Origins of Good and Evil. New York: The Crown Publishing Group.
  • Caro, T.M. & Hauser, M.D. (1992). Is there teaching in nonhuman animals? Q. Rev. Biol. 67, 151–17.
  • Corriveau, K. H. & Harris, P. L. (2009). Choosing your informant: weighting familiarity and recent accuracy. Developmental science, 12, 3, 426-437.
  • Csibra, G. (2007). Teachers in the wild. Trends in Cognitive Sciences, 11, 95-96. 
  • Csibra, G. & Gergely, G. (2009). Natural pedagogy. Trends in Cognitive Sciences, 13, 4,148-53. 
  • Csibra, G. & Gergely, G. (2011). Natural pedagogy as evolutionary adaptation. Philosophical Transactions of the Royal Society of London B Biological Sciences, 12, 366, 1149-1157. 
  • Dawkins, R. (2006). The God Delusion. Boston: Houghton Mifflin.
  • De Waal, F. (2001). The Ape and the Sushi Master, Cultural reflections by a primatologist. New York: Basic Books.
  • Gergely, G., Bekkering, H., Kirali, I. (2002). Developmental psychology: Rational imitation in preverbal infants. Nature, 415, 755.
  • Gergely, G. & Csibra, G. (2006). Sylvia's recipe: The role of imitation and pedagogy in the transmission of human culture. In: NJ Enfield, SC Levinson  (Eds.). Roots of Human Sociality: Culture, Cognition, and Human Interaction. Oxford: Berg Publisher. 2006. p. 229-55. 
  • Gopnik, A. (2012). Le bébé philosophe. Paris: Le Pommier.
  • Gopnik, A., Meltzoff, A.N., & Kuhl, P.K. (2007). Comment pensent les bébs? Paris: Le Pommier. 
  • Goswami, U. (2008). Cognitive Development: The Learning Brain. Psychology Press, Taylor & Francis.
  • Harris, P. (2007). Trust. Developmental science, 10, 135-138.
  • Harris, P. (2012). Trusting what you’re told: How children learn from others. Belknap Press. 
  • Harris, P. & Corriveau, K. (2011). Young children’s selective trust in informants.  Proceedings of the Royal Society B, 366, 1179-1190.
  • Harris, P. & Koenig, M. (2006). Trust in testimony : How children learn about science and religion. Child development, 77, 505-524.
  • Herrmann, E., Call, J., Hernandez-Lloreda, M.V., Hare, B., Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science, 317, 1360-1366.
  • Hoppitt, W., Brown, G.R., Kendal, R., Rendell, L., Thornton, A., Webster, M.M., Laland, K.N. (2008). Lessons from animal teaching. Trends in ecology and evolution, 3, 29, 486-493.
  • Houdé, O. (2004). La Psychologie de l’enfant. Paris: PUF.
  • Meltzoff, A.N., & Decety, J. (2003). What imitation tells us about social cognition: A rapprochement between developmental psychology and cognitive neuroscience. The Philosophical Transactions of the Royal Society, 358, 491-500.
  • Meltzoff, A.N. & Moore, M.K. (1983). Newborn Infants Imitate Adult Facial Gestures, Child Development, 54, 702-709.
  • Meltzoff, A.N., & Prinz, W. (Eds.) (2002). The imitative mind: Development, evolution, and brain bases. Cambridge, UK: Cambridge University Press. 
  • Pagel, M. (2012). Wired for Culture: Origins of the Human Social Mind. New York: W. W. Norton & Company.
  • Racoczy, H., Warneken, F., Tomasello, M. (2008). The sources of normativity. Young children’s awareness of the normative structure of games. Developmental psychology, 44, 875-881.
  • Repacholi, B. & Gopnik, A. (1997). Early reasoning about desires: evidence from 14-and 18-month-olds., 33, 1, 12.
  • Rizzolatti, G. & Craighero, L. (2004). The mirror neuron system. Annual Review of Neuroscience, 27, 169-92. 
  • Skerry, A., (2013). The origins of pedagogy: developmental and evolutionary perspectives. Evolutionary psychology, 11, 3, 550-571.
  • Sperber, D., Clément, F., Heintz, C., Mascaro, O., Mercier, H., Origgi, G., Wilson, D. (2010). Epistemic vigilance. Mind & Language, 25, 359–393.
  • Sterelny, K. (2012). The evolved apprentice. Cambridge, MA: MIT Press.
  • Strauss, S. (2005). Teaching as a natural cognitive ability: Implications for classroom practice and teacher education. In D. Pillemer & S. White (Eds.), Developmental psychology and social change, pp. 368-388. New York: Cambridge University Press. 
  • Strauss, S. & Ziv, M. (2012). Teaching is a natural cognitive ability for humans. Mind, Brain, and Education, 6, 4, 186-196.
  • Thornton, A. & Raihani, N.J. 2008. The evolution of teaching. Animal Behaviour, 75, 1823-1836.  
  • Tomasello, M. (1999). The Cultural Origins of Human Cognition. Harvard University Press.
  • Tomasello, M. (2009). Why we cooperate. Cambridge, MA : MIT Press.
  • Tomasello, M., Carpenter, M., Call, J., Behne, T.,  Moll, H. (2005).
    Understanding and sharing intentions: The origins of cultural cognition.
    Behavioral and Brain Sciences, 28, 675-735.
  • Tomasello, M. & Herrmann, E. (2010). Ape and human cognition: What's the difference?  Current Directions in Psychological Research, 19, 3-8.
  • Tomasello, M., Kruger, A., & Ratner, H. (1993). Cultural learning. Behavioral and brain sciences, 16, 492-552.
  • Tomasello, M. & Rakoczy, H. (2003). What makes human cognition unique ? From individual to shared intentionality. Mind and Language, 18, 121-147. 
  • Whiten, A. (2005). The second inheritance system of chimpanzees and humans. Nature, 437, 52–55.
  • Whiten, A. & von Schalk, C.P. (2007). The evolution of animal cultures and social intelligence. Philosophical transactions of the Royal Society B, 362, 1480, 603-620.
Folk knowledge
  • Atran, S. (1999). Folkbiology. In R. Wilson and F. Keil (Eds.), The MIT Encyclopedia of the Cognitive Sciences, pp. 316-317. Cambridge, MA: MIT Press.
  • Atran, S., Medin, D.L, & Ross, N. (2004). Evolution and Devolution of Knowledge: A Tale of Two Biologies. Journal of the Royal Anthropological Institute, 10, 2,  395-420.
  • Au, T.K. (1994). Developing an intuitive understanding of substance kinds. Cognitive Psychology, 27, 71–111.
  • Baillargeon, R. (1994). How do infants learn about the physical world? Current Directions in Psychological Science, 3, 133-140.
  • Baillargeon, R. (2002). The acquisition of physical knowledge in infancy: A summary in eight lessons. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 46-83). Oxford: Blackwell.
  • Baillargeon, R. (2004). Infants' physical world. Current Directions in Psychological Science, 13, 89-94.
  • Baillargeon, R., & Carey S. (2012). Core cognition and beyond: The acquisition of physical and numerical knowledge. In S. Pauen (Ed.), Early childhood development and later outcome, pp. 33-65. London: Cambridge University Press. 
  • Baillargeon, R., Kotovsky, L., & Needham, A. (1995). The acquisition of physical knowledge in infancy. In D. Sperber, D. Premack, & A. J. Premack (Eds.), Causal cognition: A multidisciplinary debate (pp. 79-116). Oxford: Clarendon Press.
  • Baillargeon, R., Li, J., Gertner, Y., & Wu, D. (2011). How do infants reason about physical events? In U. Goswami (Ed.), The Wiley-Blackwell handbook of childhood cognitive development, second edition (pp. 11-48). Oxford: Blackwell. 
  • Barkow, J., Cosmides, L., Tooby, J. (1997). The adapted mind. Oxford University Press. 
  • Baron-Cohen, S. (1995). Mindblindness: an essay on autism and theory of mind. Cambridge, MA: MIT Press.
  • Baron-Cohen, S., Leslie, A.M., & Frith, U. (1985). Does the autistic child have a "theory of mind"? Cognition, 21, 37–46.
  • Baumard, N. (2013). Faut-il de la morale à l’école ? Cerveau et psycho, 58, 10-11.
  • Bloom, P. (2000). How children learn the meanings of words. Cambridge, MA: MIT Press.
  • Bloom, P. (2010). How Pleasure Works: The new science of why we like what we like. New York: Norton.
  • Bloom, P. (2010). The Pleasures of Imagination. The Chronical of Higher Education.
  • Bloom, P. & German, T.P. (2000). Two reasons to abandon the false belief task as a test of theory of mind. Cognition, 77, B25-B31.
  • Buss, D. M. (1995). Evolutionary psychology: A new paradigm for psychological science. Psychological Inquiry, 6, 1-30.
  • Buss, D.M. (2005). The Handbook of Evolutionary Psychology. Hoboken: Wiley, 2005. 
  • Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
  • Carey, S. (2000). The origin of concepts. Journal of Cognition and Development, 1, 37-41.
  • Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.
  • Carey, S. (2011). The Origin of Concepts: A précis. Behavioral and Brain Sciences, 34, 113-167.
  • Carey, S. & Spelke, E. (1996). Science and core knowledge. Philosophy of science, 63, 4, 515-533.
  • Cosmides, L. & Tooby, J. (n.d.). Evolutionary psychology : A primer. Center for evolutionary psychology. http://homes.ieu.edu.tr/hcetinkaya/EvPsychPrimer.pdf
  • Cosmides, L. & Tooby, J. (2013). Evolutionary psychology: New perspectives on cognition and motivation. Annual Review of Psychology, 64, 201-229.
  • Dawson-Tunik, T. L., Commons, M., Wilson, M., and Fischer, K. W. (2005). The shape of development. European Journal of Developmental Psychology, 2, 163–195.
  • Dehaene, S. (1997). La bosse des maths. Paris : Odile Jacob.
  • Dehaene, S., Izard, V., Spelke, E.S., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian cultures. Science, 320, 5880, 1213-1216.
  • di Sessa A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10, 105–225.
  • Driver, R., Guesne, E., & Tiberghien, A. (Eds.) (1985). Children's ideas in science. Milton Keynes: Open University Press.
  • Estes, D., Wellman, H., & Woolley, J. (1989). Children's understanding of mental phenomena. In H.W. Reese (Ed.), Advances in Child Development and Behavior (pp. 41-89). New York: Academic Press. 
  • Fischer, K. W. & Bidell, T. R. (1998). Dynamic development of psychological structures in action and thought. In R.M. Lerner (ed.) and W. Damon (Series ed.), Handbook of Child Psychology: Vol. I. Theoretical Models of Human Development, pp. 467–561. New York: Wiley.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906-911.
  • Flavell, J. H. (1987). Speculations about the nature and development of metacognition. In F. E. Weinert & R. H. Kluwe (Eds.), Metacognition, Motivation, and Understanding (pp. 21-29). Hillside, NJ: Lawrence Erlbaum Associates.
  • Flavell, J. (1986). The development of children's knowledge about the appearance–reality distinction. American Psychologist, 41, 4, 418-425.
  • Flavell, J., Green, F., Flavell, E., (1986). Development of Knowledge about the Appearance-Reality Distinction. Monographs of the Society for Research in Child Development, 51, 1.
  • Gelman, R. (1990). First principles organize attention to and learning about relevant data: number and the animate-inanimate distinction as examples. Cognitive Science 14, 79–106.
  • Gelman, S.A. (1996). Concepts and theories. In Perceptual and cognitive development, eds. R. Gelman and T.K. Au. New York: Academic Press.
  • Gelman, S.A. (2003). The essential child: Origins of essentialism in everyday thought. Oxford: Oxford University Press.
  • Gelman, R. (2004). Psychological essentialism in children. Trends in cognitive neuroscience, 8, 9, 405-409.
  • Gelman, S.A., and Markman, E. (1986). Categories and induction in young children. Cognition, 23, 183-209.
  • Gelman, S.A., and Markman, E.M. (1987). Young children’s inductions from natural kinds: The role of categories and appearances. Child Development, 58, 1532-1541.
  • Gelman, S. A., & Opfer, J. (2002). Development of the animate-inanimate distinction. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 151-166). Malden, MA: Blackwell.
  • Gelman, S.A. and Wellman, H.M. (1991). Insides and essences: early understandings of the nonobvious. Cognition, 38, 213–244.
  • Gopnik, A. (1993). How we know our own minds: the illusion of first person knowledge of intentionality, Behavioral and Brain Sciences, 16, 1-14.
  • Halpern, D. F. (1996). Thought and knowledge: An introduction to critical thinking. Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Hirschfeld, L.A. & Gelman, S.A. (Eds.) (1994). Mapping the mind: Domain specificity in cognition and culture. New York: Cambridge University Press.
  • Hood, B.M. & Bloom, P. (2008). Children prefer certain individuals over perfect duplicates. Cognition, 106, 455-462.
  • Hood, B.M., Gjersoe, N.L., & Bloom, P. (2012). Do children think that duplicating the body also duplicates the mind? Cognition, 125, 466-474. 
  • Houdé, (2006). La psychologie de l’enfant, 40 ans après Piaget. Sciences Humaines, 3.
  • Karmiloff-Smith, A. (1996). Beyond modularity. A developmental perspective on cognitive science. Cambridge, MA : MIT Pres.
  • Keil, F.C. (1992). The origins of an autonomous biology. In M. Gunnar and M. Maratsos (Eds.), Modularity and constraints in language and cognition: The Minnesota Symposia. Hilldale, N.J.: Earlbaum.
  • Keil, F.C. (2003). That’s life: Coming to understand biology. Human Development, 46, 369–377.
  • Keil, F.C. (2007). Biology and Beyond: Domain Specificity in a Broader Developmental Context. Human Development, 50, 31–38.
  • Keil, F.C. (2010).  The feasibility of folk science. Cognitive Science, 34, 826-862.
  • Kind, V. (2004). Beyond appearances: students’ misconceptions about basic chemical ideas. Report for the Royal Society of Chemistry.
  • Inagaki, K., & Hatano, G. (2002). Young children’s naive thinking about the biological world. New York: Psychology Press.
  • Inagaki, K., & Hatano, G. (2006). Young children’s conceptions of the biological world. Current Directions in Psychological Science, 15, 177–181.
  • Landau, B., Gleitman, H., Spelke, E. (1981). Spatial knowledge and geometric reresentation in a child blind from birth. Science, 213, 4513, 1275-1278.
  • Leslie, A.M. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L. & Gelman S. (eds.). (1994). Mapping the mind: Domain specificity in cognition and culture. New York : Cambridge University Press.
  • Leslie, A.M. (2000). ‘Theory of mind’ as a mechanism of selective attention. In M. Gazzaniga (Ed.), The New Cognitive Neurosciences, 2nd Edition., pp. 1235–1247. Cambridge, MA: MIT Press.
  • Leslie, A.M., Friedman, O., & German, T.P. (2004). Core mechanisms in 'theory of mind'. Trends in Cognitive Sciences, 8528–533.
  • Medin, D.L. & Atran, S. (eds.) (1999). Folkbiology. Cambridge, MA: MIT Press.
  • Medin, D.L & Atran, S. (2004). The Native Mind: Biological Categorization, Reasoning and Decision Making in Development Across Cultures. Psychological Research, 111, 960-981. 
  • Meheut, M. & Chomat, A. (1990). Les limies de l’atomisme enfantin: Experimenta- tion d’une demarche d’elaboration d’un modele particulaire par des eleves de college. European Journal of Psychology of Education, 4, 417-437.
  • Metcalfe, J., & A. P. Shimamura, Eds. (1994). Metacognition: Knowing about Knowing. Cambridge, MA: MIT Press.
  • Morris, S.C., Taplin, J.E., Gelman, S.A. (2000). Vitalism in naïve biological thinking. Developmental psychology, 36, 5, 582-595.
  • Munakata, Y., Casey, B. J., Diamond, A. (2004). Developmental cognitive neuroscience: Progress and potential. Trends in Cognitive Science, 8, 122-128.
  • NRC (2007). Taking science in school : Learning and teaching science in grades K-8. Washington: NAP Press.
  • Opfer, J. E., & Gelman, S. A. (2011). Development of the animate-inanimate distinction. In U. Goswami (Ed.), The Wiley-Blackwell handbook of childhood cognitive development: 2nd Edition (pp. 213-238). Oxford/New York: Wiley-Blackwell.
  • Pasquinelli, E. (2012). L’illusion de réalité. Paris : Vrin.
  • Piaget, J. (2003). La représentation du monde chez l’enfant. Paris : PUF.
  • Piaget, J. (2004). La psychologie de l’enfant. Paris : PUF.
  • Piazza, M. & Dehaene, S. (2004). From number neurons to mental arithmetic: the cognitive neuroscience of number sense. In M. Gazzaniga (Ed.),  The Cognitive Neurosciences. 3rd edition. Cambridge, MA: MIT Press.
  • Piazza, M. & Izard, V. (2009). How humans count: numerosity and the parietal cortex. Neuroscientist, 15, 3, 261-273. 
  • Pinker, S. (1997). How the mind works. New York : W. W. Norton.
  • Pinker, S. (2002). The blank slate. New York : Viking.
  • Premack, D. G. & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 4, 515–526.
  • Prentice, D. A. & Miller, D. T. (2006). Essentializing differences between women and men. Psychological Science, 17, 129-135.
  • Proffitt, D.R. (1999), Naive physics, In R. Wilson and F. Keil (Eds.), The MIT encyclopedia of the cognitive sciences. Cambridge, MA: MIT Press.
  • Saxe, R., Tenenbaum, J. B., & Carey, S. (2005). Secret Agents: Inferences about hidden causes by 10- and 12-month-old infants. Psychological Science, 16, 12, 995-1001.
  • Siegal, M, Butterworth, G., Newcombe, P.A. (2004). Culture and children's cosmology. Developmental Science,  7, 308–324.
  • Skolnick, D. & Bloom, P. (2006). What does Batman think about SpongeBob? Children's understanding of the fantasy/fantasy distinction. Cognition, 101, B9-B18.
  • Siegal, M., & Peterson, C.C. (Eds.) (2005). Children’s understanding of biology and health. Cambridge: Cambridge University Press.
  • Smith, C., Carey, S., & Wiser, M. (1985). On differentiation: A case study of the development of the concepts of size, weight and density. Cognition, 21, 177-237.
  • Spelke, E.S. (1982). Perceptual knowledge of objects in infancy. In: Mehler J, Garrett M, Walker E, Perspectives on mental representation. Hillsdale, NJ: Erlbaum
  • Spelke, E.S. (1990). Principles of Object Perception. Cognitive Science, 14, 29-56.
  • Spelke, E.S. (1993). Object perception. In A. I. Goldman (Ed.), Readings in philosophy and cognitive science (pp. 447–460). Cambridge, MA: MIT Press.
  • Spelke, E.S. (1994). Initial knowledge: Six suggestions. Cognition, 50, 431-445.
  • Spelke, E.S. (2008), La théorie du "Core Knowledge" in L'Année psychologique, 108, 4, 721-756.
  • Spelke, E.S. (2011). Natural number and natural geometry. In: Brannon E, Dehaene S Space, Time and Number in the Brain: Sear.ng for the Foundations of Mathematical Thought Attention & Performance XXIV. Oxford University Press; 2011. pp. 287-317.
  • Spelke, E.S., Lee, S.A., Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science. 34, 5, 863-884. 
  • Spelke, E.S. & Kinzler, K. (2007). Core knowledge. Developmental science, 10, 1, 89-96.
  • Sperber, D. (1996). Explaining culture. Oxford : Blackwell.
  • Taylor, M. & Flavell, J. (1984). Seeing and believing: children’s understanding of the distinction between appearance and reality. Child development, 55, 1710-1720.
  • Tiberghien, A. (2003). Des connaissances naïves au savoir scientifique. In M. Kail & M. Fayol (Eds.), Les sciences cognitives et l'école. la question des apprentissages (pp. 333-443). Paris: Presses Universitaires de France.
  • Viennot, L. (1996). Raisonner en physique. La part du sens commun. Paris : de Boeck et Larcier.
  • Vosniadou, S. (2002). On the nature of naive physics. In: Limon, M., Mason, L. (Eds.), Reconsidering conceptual change: Issues in theory and practice, (pp. 61-76) Dordrecht: Kluwer.
  • Vosniadou, S. (2010). International handbook of research on conceptual change. London : Routledge.
  • Wang, S. & Baillargeon, R. (2008). Can infants be taught to attend to a new physical variable in an event category? The case of height in covering events. Cognitive Psychology, 56, 4,  284-326. 
  • Wang, S. & Kohne, L. (2007). Visual experience enhances infants' use of task-relevant information in an action task. Developmental Psychology, 43, 1513-152.
  • Wellman, H. & Estes, D. (1986). Early Understanding of Mental Entities: A Reexamination of Childhood Realism. Child Development, 57, 4, 910-923.
  • Wellman, H.M., & Gelman, S.A. (1992). Cognitive Development: Foundational theories of core domains. Annual Review of Psychology, 43, 337–75.
  • Wellman, H. M., & Gelman, S. A. (1998). Knowledge acquisition in foundational domains. Handbook of Child Psychology (5th ed., Vol. 2), pp. 523–574.
  • Wimmer, H. & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception. Cognition, 13, 1,  103-128.
  • Woolley, J. & Wellman, H. (1990). Young children's understanding of realities, nonrealities, and appearances. Child Development, 61, 4, 946-961.
  • Wynn, K. (1998). Psychological foundations of number: numerical competence in human infants. Trends in cognitive science, 2, 8, 296-303.
Difficulties in science learning - that come from others
  • Bloom, P. & Weisberg, D. (2007). Childhood origins of adult resistance to science. Science, 316, 996-997.
  • Bransford, J.D., Brown, A.L., & Cocking, R.R. (2000). How people learn: brain, mind, experience, and school. Washington, D.C.: National Academies Press.
  • Bruer, J. T. (1993). Schools for thought. Cambridge, MA: MIT Press. 
  • Camerer, C., Loewenstein, G. & Weber, M. (1989). The curse of knowledge in economic settings: An experimental analysis. Journal of Political Economy, 97, 1232-1254. 
  • Casati, R. (2013). Dov’è il Sole di note? Lezioni atipiche di astronomia. Milano: Raffaello Cortina Editore.
  • Chabris, C. & Simons, D. (2010). The invisible gorilla and other ways our intuitions deceive us. New York: Crown. 
  • deGroot, A. (1965). Thought and choice in chess. The Hague : Mouton.
  • Dunning, D., Johnson, K., Ehrlinger, J., Kruger, J. (2003). Why people fail to recognize their own incompetence. Current Directions in Psychological Science, 12, 3,  83–87.
  • Ehrlinger, J., Johnson, K., Banner, M., Dunning, D., Kruger, J.  (2008). Why the Unskilled Are Unaware: Further Explorations of (Absent) Self-Insight Among the Incompetent. Organizational Behavior and Human Decision, 105, 1, 98-121.
  • Ericsson, A.K. (2002). Attaining excellence through deliberate practice: Insights from the study of expert performance. In M. Ferrari (Ed.), The pursuit of excellence in education (pp. 21-55). Hillsdale, N.J.: Erlbaum.
  • Ericsson, A.K. (2008). Deliberate practice and acquisition of expert performance: A general overview. Academic Emergency Medicine. 15, 11) 988-994.
  • Ericcson, A.K. & Charness, N. (1994). Expert performance: Its structure and acquisition. American Psychologist, 49, 8, 725-747.
  • Ericsson, A.K., Charness, N., Feltovich, P., Hoffman, R.R. (2006). Cambridge handbook on expertise and expert performance. Cambridge, UK: Cambridge University Press.
  • Ericsson, A.K.,  Prietula, M.J.,  Cokely, E.T. (2007). The making of an expert. Harvard Business Review.
  • Fraser, A. The pathetic fallacy, in Alistair Fraser’s Web Site http://www.ems.psu.edu/~fraser/Bad/PatheticFallacy.html
  • Gilovich, T., Griffin, D. W. & an, D. (Eds.). (2002). Heuristics and Biases: The Psychology of Intuitive Judgment. New York: Cambridge University Press.
  • Glaser, R., Chi, M.T.H., Farr, MJ. (1988). The nature of expertise. Hillsdale, NJ: Erlbaum.
  • Harris, P. (2012). Trusting what you’re told: How children learn from others. Belknap Press. 
  • Harris, P.L., Corriveau, K.H., Pasquini, E.S., Koenig, M.A. & Clement, F. (2012). Credulity and the development of selective trust in early childhood.  In M. Beran, J. Brandl, J. Perner & J. Proust (eds.)  Foundations of Metacognition. (pp. 193-210). New York, NY: Oxford University Press.
  • Hill, N. M. & Schneider, W. (2006) Brain changes in the development of expertise: Neurological evidence on skill-based adaptations. In K. A. Ericsson, N. Charness, P. Feltovich, and R. Hoffman (Eds.), Cambridge Handbook of Expertise and Expert Performance. New York: Cambridge University, 653-682.
  • Keil, F. (2010). The feasibility of folk science. Cognitive science, 34, 826-862.
  • Keil, F. C. (2011). Science starts early. Science, 33, 1022-1023.
  • Keil, F.C., Lockhart, K.L., & Schlegel, E. (2010). A Bump on a Bump?: Emerging Intuitions Concerning The Relative Difficulty of the Sciences. Journal of Experimental Psychology, 139, 1, 1-15.
  • Kruger, J. & Dunning, D. (1999). Unskilled and unaware of it: How difficulties in recognizing one's own incompetence lead to inflated self-assessments. Journal of Personality and Social Psychology, 77, 6, 1121–34.
  • McCabe, D.P., & Castel, A.D. (2008). Seeing is believing: The effect of brain images on judgments of scientific reasoning. Cognition, 107, 343–352.
  • McKay, R.T. & Dennett, D.C. (2009). The evolution of misbelief. Behavioral and Brain Sciences, 32, 6, 493-510.
  • Newton, E. (1990). Overconfidence in the Communication of Intent: Heard and Unheard Melodies, Ph.D. dissertation, Stanford University.
  • Rozenblit, L., & Keil, F. C. (2002). The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science, 26, 521–562. Journal of Experimental Child Psychology, 49, 31–57.
  • Sharot, T. (2011). The optimism bias. New York : Pantheon Books. 
  • Simanek, D. (2008). Didaktikogenic physics misconceptions. Student misconceptions induced by teachers and textbooks. In Donald Simanek’s Web Site http://www.lhup.edu/~dsimanek/scenario/miscon.htm http://www.lhup.edu/~dsimanek/who.htm
  • Simon, H.A. & Chase, W.G. (1973). Skill in chess. American scientist, 61, 394-403.
  • TCWSEI - The Carl Wieman Science Education Initiative. http://www.cwsei.ubc.ca
  • http://www.cwsei.ubc.ca/resources/index.html 
  • Trout, J.D. (2002). Scientific explanation and the sense of understanding. Philosophy of science, 69, 212-233.
  • Trout, J.D. (2007). The psychology of scientific explanation, Philosophy Compass, 2/3, 564-591.
  • Trout, J.D. (2008). Seduction without cause: Uncovering explanatory neurophilia. Trends in cognitive sciences, 12, 281-282.
  • Weisberg, D. (2008). Caveat lector: The presentation of neuroscience information in the popular media. The Scientific Review of Mental Health Practice, 6, 51–6. 
  • Weisberg, D., Keil, F.C., Goodstein, J., Rawson, E. (2008). The seductive allure of neuroscience explanations. Journal of Cognitive Neuroscience, 20, 470–477.
  • Wieman, C. (2007). The "Curse of Knowledge," or Why Intuition About Teaching Often Fails. American Physical Society News, 16, 10.
Difficulties in science learning - that come from previous knowledge: preconceptions, misconceptions, conceptual change
  • Au, T.K. (1994). Developing an intuitive understanding of substance kinds. Cognitive Psychology, 27, 71–111.
  • Bloom, P. (2004). Descartes’ baby. How the science of child development explains what makes us human. New York: Basic Books.
  • Bloom, P. (2006). My brain made me do it. Journal of Culture and Cognition, 6, 209-214.
  • Bloom, P. (2010). The Pleasures of Imagination. The Chronical of Higher Education.
  • Bloom, P. & Weisberg, D. (2007). Childhood origins of adult resistance to science. Science, 316, 996-997.
  • Brown, D., & Clement, J. (1989). Overcoming  misconceptions via analogical reasoning: factors influencing understanding in a teaching experiment. 
  • Instructional Science, 18, 237-261. 
  • Bruer, J. T. (1993). Schools for thought. Cambridge, MA: MIT Press. 
  • Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
  • Carey, S. (1986). The acquisition of scientific knowledge. The Problem of Reorganization. In S. Strauss (ed.), Ontogeny, Phylogeny, and the History of Science. Norwood, NJ: Ablex.
  • Carey, S. (1990). Cognitive development. In D. Osherson & E. Smith (eds.), Invitation to Cognitive Science, 3. Bradford Books, MIT Press, 147-172.
  • Carey, S. (1991). Knowledge acquisition: enrichment or conceptual change? In S. Carey & R. Gelman (eds.), The Epigenesis of Mind: Essays in Biology and Cognition. Hillsdale, NJ: Erlbaum, 257-291.
  • Carey, S. (2000). The origin of concepts. Journal of Cognition and Development, 1, 37-41.
  • Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation and categorical shift. In: S. Vosniadou (Ed.), Handbook of research on conceptual change. London, UK: Routledge. 
  • Clement, J. (1982). Students' preconceptions in introductory mechanics. The American Journal of Physics, 50, 1,  66-71.
  • Clement, J. (1998). Expert novice similarities and instruction using analogy.  International journal of science education, 20, 10, 1271-1286.
  • Clement, J., Brown, D., & Zietsman, A. (1989). Not all  preconceptions are misconceptions: Finding anchoring 
  • conceptions for grounding instruction on students'  intuitions. International Journal of Science Education,  11, 554-565. 
  • Da Silva, V.A. (2004). Savoirs quotidiens et saviors scientifiques: L’élève entre deux mondes. Paris: Economica.
  • diSessa, A. A. (2006). A history of conceptual change research: Threads and fault lines. In K. Sawyer (ed.), Cambridge handbook of the learning sciences (pp. 265-281). Cambridge, UK: Cambridge University Press.  
  • Driver, R., Guesne, E., & Tiberghien, A. (Eds.) (1985). Children's ideas in science. Milton Keynes: Open University Press.
  • Duit, R. & Treagust, D. (2003). Conceptual Change - A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671-688.
  • Duit, R. & Treagust, D.F.  (2012). How Can Conceptual Change Contribute to Theory and Practice in Science Education? In B. F. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international  handbook of science education (pp. 107-118). Dordrecht, The Netherlands: Springer.
  • Dunbar, K., Fugelsang, J., & Stein, C. (2007). Do naïve theories ever go away? In M. Lovett, & P. Shah (Eds.), Thinking with Data: 33rd Carnegie Symposium on Cognition. Mahwah, NJ: Erlbaum.
  • Gazzaniga, M. (2004). The ethical brain. New York: The Dana Press. 
  • Gigerenzer, G. (2000). Adaptive thinking: Rationality in the real world. New York: Oxford University Press.
  • Gigerenzer, G. (2007). Gut feelings: The intelligence of the unconscious. New York: Viking Press.
  • Gigerenzer, G. (2008). Rationality for mortals: How people cope with uncertainty. New York: Oxford University Press.
  • Giordan, A., de Vecchi G. (1987).  Les Origines du savoir. Neuchatel : Delachaux et Niestlé. 
  • Gopnik, A. (1996). The scientist as child. Philosophy of Science, 63, 485–514. 
  • Gopnik, A. (2003). The theory theory as an alternative to the innateness hypothesis. In L. Antony & N. Hornstein (Eds). Chomsky and his Critics. New York: Basil Blackwell.
  • Gopnik, A. & Meltzoff, A.M. (1997). Words, Thoughts, and Theories; Cambridge, MA: The MIT Press.
  • Gottfried, G. M., Gelman, S. A., & Schultz, J. (1999). Children's understanding of the brain: From early essentialism to biological theory. Cognitive Development, 14, 147-174.
  • Kahneman, D. (2011). Thinking Fast and Slow. New York: Allen Lane.
  • Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
  • Keil, F.C. (2010).  The feasibility of folk science. Cognitive Science, 34, 826-862.
  • Kelemen, D. (1999). Why are rocks pointy? The preference of children for teleological explanations. Developmental psychology, 35, 6, 1440-1452.
  • Kelemen, D. (2004). Are children intuitive theists? Developmental psychology, 13, 5,  295-301.
  • Kelemen, D. (2012). Teleological minds: How natural intuitions about agency and purpose  influence learning about evolution. In K. S. Rosengren, S. K. Brem, E. M. Evans, and G. M. Sinatra (Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution. Oxford: Oxford University Press.
  • Inagaki, K., & Hatano, G. (2002). Young children’s naive thinking about the biological world. New York: Psychology Press.
  • Johnson, C.N. (1990). If You Had My Brain, Where Would I Be? Children's Understanding of the Brain and Identity. Child development, 61, 4, 962-972.
  • Lautrey, J., Remi-Giraud, S., Sander, E., Tiberghien, A. (2008). Les connaissances naïves. Paris: Armand Colin.
  • Leslie, A.M. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L. & Gelman S. (eds.). (1994). Mapping the mind: Domain specificity in cognition and culture. New York : Cambridge University Press.
  • Masson, S., Potvin, P., Riopel, M., & Brault Foisy, L.-M. (2014). Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind, Brain, and Education, 8, 1, 37-48. 
  • McCloskey (1983). Intuitive physics. Scientific American, 248, 4, 122-130.
  • McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naïve beliefs about the motion of objects. Science, 210, 1139-1141.
  • Minstrell, J. (1982). Explaining the "at rest" condition of an object. The Physics Teacher, 20, 10-14.
  • Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (ed.) Cognitive Models of Science. University of Minnesota Press. Minneapolis.
  • Nersessian, N. J. (1998). Conceptual change. In Bechtel, W. & Graham, G. (eds.) A Companion to Cognitive Science. Blackwell, Malden, MA. 155-166.
  • NRC (2007). Taking science in school : Learning and teaching science in grades K-8. Washington: NAP Press.
  • Posner, G.  Strike, K., Hewson, P., Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science education, 66, 2, 211-227. 
  • Proffitt, D.R. (1999), Naive physics, In R. Wilson and F. Keil (Eds.), The MIT encyclopedia of the cognitive sciences. Cambridge, MA: MIT Press.
  • Shtulman, A. (2006). Qualitative differences between naïve and scientific theories of evolution. Cognitive Psychology, 52, 170-194.
  • Shtulman, A., & Calabi, P. (2012). Cognitive constraints on the understanding and acceptance of evolution. In K. S. Rosengren, S. Brem, E. M. Evans, & G. Sinatra (Eds.), Evolution challenges: Integrating research and practice in teaching and learning about evolution (pp. 47-65). Cambridge, UK: Oxford University Press.
  • Shtulman, A. & Schulz, L. (2008). Essentialist beliefs about species and their relationship to evolutionary reasoning. Cognitive Science, 32, 1049-1062.
  • Shtulman, A. & Valcarcel, J. (2012). Scientific knowledge suppresses but not supplant earlier intuitions. Cognition, 124, 209-215.  
  • Siegal, M (2008). Marvelous minds: The discovery of what children know. Oxford University Press.
  • Siegal, M., Butterworth, G., & Newcombe, P. A. (2004). Culture and children's cosmology. Developmental Science, 7, 308-324.
  • Siegal, M., Nobes, G., Panagiotaki, G. (2011). Children’s knowledge of the Earth. Nature geoscience, 130-132.
  • Smith, J. P., diSessa, A. A.  & Roschelle, J. (1993). Misconceptions Reconceived: A Constructivist Analysis of Knowledge in Transition. Journal of the Learning Sciences, 3, 115-163.
  • Tiberghien, A. (2003). Des connaissances naïves au savoir scientifique. In M. Kail & M. Fayol (Eds.), Les sciences cognitives et l'école. la question des apprentissages (pp. 333-443). Paris: Presses Universitaires de France.
  • Vosniadou, S. (1994). Universal and Culture-Specific Properties of Children's Mental Models of the Earth. In L. Hirschfeld & S. Gelman (Eds.), Mapping the mind. New York: Cambridge University Press, 412-430.
  • Vosniadou, S. (2002). On the nature of naive physics. In: Limon, M., Mason, L. (Eds.), Reconsidering conceptual change: Issues in theory and practice, (pp. 61-76) Dordrecht: Kluwer.
  • Vosniadou, S. (2010). International handbook of research on conceptual change. New York : Routledge. 
  • Vosniadou, S. (2013). Conceptual change in learning and instruction: The framework theory approach. In S Vosniadou, ed. International Handbook of Research on Conceptual Change. 2nd ed. New York, USA: Routledge, pp. 11-30.
  • Vosniadou, S. & Brewer, W. (1992). Mental models of the Earth: A study of conceptual change in childhood. Cognitive psychology, 24, 535-585.   
  • Vosniadou, S., Skopeliti, I., Ikispentaki, K. (2005). Reconsidering the role of artifacts in reasoning: Children’s understanding of the globe as a model of the Earth. Learning and instruction, 15, 333-351.  
Difficulties in science learning - related to the development of scientific, experimental reasoning skills
  • Amsel, E., & Brock, S. (1996). The development of evidence evaluation skills. Cognitive Development, 11, 523–550.
  • Carey, S., Evans, R., Honda, M., Jay, E., Unger, C. (1989). “An experiment is when you try it and see if it works”: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514–529.
  • Dunbar, K., & Klahr, D. (1989). Developmental differences in scientific discovery strategies. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The Impact of Herbert Simon (p. 109-144). Hillsdale, NJ: Lawrence Erlbaum & Associates.
  • Keil, F.C. (2010).  The feasibility of folk science. Cognitive Science, 34, 826-862.
  • Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge: MIT Press. 
  • Klahr, D. (2005).  Early science instruction: Addressing fundamental issues. Psychological Science, 16(11).
  • Klahr, D., Fay, A., & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25, 111–146.
  • Klahr, D. & Li, J. (2005).  Cognitive Research and Elementary Science Instruction: From the laboratory, to the classroom, and back. Journal of Science Education and Technology, 4(2), 217-238.
  • Klahr, D. & Simon, H. A. (1999).  Studies of Scientific Discovery: Complementary Approaches and Convergent Findings. Psychological Bulletin, 125, 5, 524-543. 
  • Koslowski, B. (1996). Theory and evidence: The development of scientific reasoning. Cambridge: MIT Press.
  • Koslowski, B., Okagaki, L., Lorenz, C., & Umbach, D. (1989). When covariation isn’t enough: The role of causal mechanism, sampling method and sample size in causal reasoning. Child Development, 60, 1316-1327.
  • Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96, 674–689.
  • Kuhn, D. (2002). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Handbook of childhood cognitive development, Oxford: Blackwell. 
  • Kuhn, D., Amsel, E., & O’Laughlin, M. (1988). The development of scientific thinking skills. New York: Academic Press.
  • Kuhn, D., Garcia-Mila, M., Zohar, A., & Andersen, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, 60, 1-128.
  • Kuhn, D., & Pearsall, S. (2000). Developmental origins of scientific thinking. Journal of Cognition and Development, 1, 113-129.
  • Kuhn, D., & Pease, M. (2008). What needs to develop in the development of inquiry skills?  Cognition and Instruction, 26, 512-559.
  • Kuhn, D., and Phelps, E. (1982). The development of problem-solving strategies. In H. Reese (Ed.), Advances in child development and behavior, pp. 1–44.
  • Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific reasoning. Cognition & Instruction, 9, 285-327.
  • Inagaki, K., & Hatano, G. (2002). Young children’s naive thinking about the biological world. New York: Psychology Press.
  • Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books.
  • Lehrer, R., and Schauble, L. (2006). Scientific thinking and science literacy. In W. Damon, R. Lerner, K.A. Renninger, and I.E. Sigel (Eds.), Handbook of child psychology, 6th ed. (Vol. 4). Hoboken, NJ: John Wiley & Sons.
  • Li, J. & Klahr, D. (2006). The Psychology of Scientific Thinking: Implications for Science Teaching and Learning. In J. Rhoton & P. Shane (Eds.) Teaching Science in the 21st Century. National Science Teachers Association and National Science Education Leadership Association: NSTA Press.
  • Metz, K. (1995). Reassessment of developmental constraints on children's science instruction. Review of Educational Research, 65, 2, 93-127.
  • Metz, K. E. (1997). On the complex relation between cognitive developmental research and children’s science curricula. Review of Educational Research, 67, 1, 151-163.
  • Morris, B. J., Croker, S., Masnick, A. M., & Zimmerman, C. (2012). The emergence of scientific reasoning.  In H. Kloos, B. J. Morris, and J. L. Amaral (Eds.), Current topics in children’s learning and cognition (pp. 61-82). Rijeka, Croatia: InTech.
  • NRC (2007). Taking science in school : Learning and teaching science in grades K-8. Washington: NAP Press.
  • Penner, D. E., & Klahr, D. (1996). The interaction of domain-specific knowledge and domain-general discovery strategies: A study with sinking objects. Child Development, 67, 2709-2727.
  • Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49, 31-57.
  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32, 102–119.
  • Schauble, L., & Glaser, R. (1990). Scientific thinking in children and adults. Contributions to Human Development, 21, 9–27.
  • Schauble, L., Glaser, R., Raghavan, K., & Reiner, M. (1991). Causal models and experimentation strategies in scientific reasoning. Journal of the Learning Sciences, 1, 201-238.
  • Schauble, L., Klopfer, L. E., & Raghavan, K. (1991). Students’ transition from an engineering model to a science model of experimentation. Journal of Research in Science Teaching, 28, 859-882.
  • Shtulman, A. (2006). Qualitative differences between naïve and scientific theories of evolution. Cognitive Psychology, 52, 170–194.
  • Siegler, R.S. (2004). U-shaped interest in U-shaped development--and what it means. Journal of Cognition and Development, 5, 1-10.
  • Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, 46, 606-620.
  • Sodian, B., Zaitchik, D., & Carey, S. (1991). Young children's differentiation of hypothetical beliefs from evidence. Child Development, 62, 753–766.
  • Thelen, E. & Smith, L. (1994). A Dynamic Systems Approach to Development. Cambridge, MA: MIT Press.
  • Thagard, P. (1998). Studies in History and Philosophy of Science, Part C. Studies in History and Philosophy of Biology and Biomedical Sciences,  29, 107-136.
  • Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51, 1-10.
  • Wolpert, L. (1994). The unnatural nature of science. Cambridge, MA: Harvard University Press.
  • Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20, 99-149.
  • Zimmerman, C. (2005). The development of scientific reasoning: What psychologists contribute to an understanding of elementary science learning. Paper commissioned by the National Academies of Science (National Research Council’s Board of Science Education, Consensus Study on Learning Science, Kindergarten through Eighth Grade).
  • Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental review, 27, 172-223.
  • Zimmerman, C., & Glaser, R. (2001). Testing positive versus negative claims: A preliminary investigation of the role of cover story in the assessment of experimental design skills (Tech. Rep. No. 554). Los Angeles, CA: UCLA National Center for Research on Evaluation, Standards, and Student Testing (CRESST).
Difficulties in science learning - related to the development of general cognitive capacities
  • Blakemore, S-J . (2008).‎ The social brain in adolescence.  Nature Reviews Neuroscience,  9, 4, 267-277. 
  • Blakemore, S-J . (2012).‎ Development of the social brain in adolescence. Journal of the Royal Society of Medicine, 105, 111–116.
  • Blakemore, S-J. & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47, 3–4, 296–312.
  • Bogin, B. (1997). Evolutionary hypotheses for human childhood. American Journal of Physical Anthropology,  104, S25, 63-89.
  • Carey, S. & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational psychologist, 28, 3, 235-251.
  • Carey et al. (1989). “An experiment is when you try it and see if it works”: A study of grade 7 students’ understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514–529.
  • Casey, B. J., Somerville, L.H., Gotlib, I.H., Ayduk, O., Franklin, N.T., Askren, M.K., Jonides, J., Berman, M.G., Wilson, N.L., Theslovic, T.,  Glover, G., Zayas, V. Mischel, W.I., Shoda, Y. (2011). Behavioral and neural correlates of delay of gratification 40 years later. PNAS, 108, 36, 14998-15003.
  • Chandler, M. J., Boyes, M., & Ball, L. (1990). Relativism and stations of epistemic doubt. Journal of experimental child psychology, 50, 370–395.
  • Chi, M.T.H. (1978). Knowledge structures and memory development. In R. Siegler (Ed.), Children's thinking: What develops? (pp. 73-96). Hillsdale, NJ: Erlbaum. Reprinted in: Wozniak, R. H. (1993) Worlds of Childhood, (pp. 232-240); New York: Harper Collins College Publishers. 
  • Davidson, M.C., Amso, D., Anderson, L.C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 11, 2037-2078.
  • Diamond, A. (2011). Biological and social influences on cognitive control processes dependent on prefrontal cortex. Progress in Brain Research, 189, 319-339.
  • Diamond, A. (2013). Executive Functions. Annual Review of Psychology, 64, 135-168.
  • Diamond, A. & Lee, K. (2011). Interventions shown to Aid Executive Function Development in Children 4-12 Years Old. Science, 333, 959-964.
  • Eigsti, I.M., Zayas, V., Michel, W., Shoda, Y., Ayduk, O., Dadlani, M. B., Davidson, M. C., & Casey, B. J. (2006). Predicting Cognitive Control From Preschool to Late Adolescence and Young Adulthood. Psychological Science, 17, 6, 478–484.
  • Ericsson, K. A., & Chase, W. G. (1982). Exceptional memory. American Scientist, 70, 607–615.
  • Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906-911.
  • Garcia-Mila, M. & Andersen, C. (2007). Developmental Change in Notetaking during Scientific Inquiry.  International Journal of Science Education, 29,  8, 1035-58.
  • Gopnik (2010). How babies think. Scientific American, 76-81.
  • Hennessey, M. G. (1999). Probing the dimensions of metacognition: Implications for conceptual change teaching-learning. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Boston, MA.
  • Hofer, B. (2001). Personal epistemology research: Implications for learning and instruction. Educational Psychology Review, 13, 4, 353-382. 
  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88-140.
  • Kidd, C., Palmeri, H., & Aslin, R.N. (2013). Rational snacking: Young children's decision-making on the marshmallow task is moderated by beliefs about environmental reliability. Cognition, 26, 1, 109-114.
  • King, P.M., & Kitchener, K.S. (1994). Developing reflective judgment. San Francisco: Jossey- Bass.
  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 5648, 1181-1185. 
  • Kuhn, D. (2000). Metacognitive development. Current directions in psychological science, 9, 5, 178-181.
  • Kuhn, D., Amsel, E., & O’Laughlin, M. (1988). The development of scientific thinking skills. New York: Academic Press.
  • Kuhn, D., & Dean, D. (2004). Connecting scientific reasoning and causal inference. Journal of Cognition & Development, 5, 261–288.
  • Lai, E.R. (2011). Metacognition: A Literature Review. Pearson Research Reports.
  • Mischel, W. (1974). Processes in delay of gratification. In: Berkowitz, L., editor. Advances in Experimental Social Psychology, Vol. 7, New York: Academic Press, pp. 249–92.
  • Mischel, W., Shoda, Y., & Rodriguez, M. (1989). Delay of gratification in children. Science, 244(4907), 933-938. 
  • Munakata, Y., Casey, B. J., Diamond, A. (2004). Developmental cognitive neuroscience: Progress and potential. Trends in Cognitive Science, 8, 122-128.
  • NRC (2007). Taking science in school : Learning and teaching science in grades K-8. Washington: NAP Press.
  • Posner M.I. (ed.) (2004). Cognitive Neuroscience of Attention. New York: Guilford
  • Posner, M.I. & Rothbart, M.K. (2004). Educating the human brain. Washington, DC: APA Books. 
  • Rueda, M. R., Posner, M. I., & Rothbart, M. K. (2004). Attentional control and self-regulation. In R. F. Baumeister & K. D. Vohs (Eds.), Handbook of self-regulation: research, theory, and applications (pp. 283-300). New York: Guilford Press.
  • Rueda, M.R., Rothbart, M.K., Saccamanno, L. & Posner, M.I. (2005). Training, maturation and genetic influences on the development of executive attention. PNAS, 102, 14931-14936.
  • Smith, C., Maclin, D., Houghton, C. & Hennessey, M.G. (2000) Sixth graders' epistemologies of science: The impact of school science experiences on epistemological development. Cognition & Instruction, 18, 3, 349-422.
  • Zimmermann, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental review, 27, 172-223.
Scientific cognition
  • Barkow, J., Cosmides, L., Tooby, J. (1997). The adapted mind. Oxford University Press. 
  • Carlson, J.S. & Levin, J.R. (Eds.) (2007). Educating the evolved mind. Greenwich, CT: Information Age.
  • Carruthers, P., Stich, S., Siegal, M. (2002). The cognitive basis of science. Cambridge : Cambridge University Press. 
  • Cosmides, L. & Tooby, J. (n.d.). Evolutionary psychology : A primer. Center for evolutionary psychology. http://homes.ieu.edu.tr/hcetinkaya/EvPsychPrimer.pdf
  • Cosmides, L. & Tooby, J. (2013). Evolutionary psychology: New perspectives on cognition and motivation. Annual Review of Psychology, 64, 201-229.
  • Feynman, R.P. (1965). The character of physical law. Cambridge, MA: MIT Press. 
  • Feynman, R.P. (1985). QED: The strange theory of light and matter. Princeton, NJ: Princeton University Press. 
  • Geary, D. C. (2002). Principles of evolutionary educational psychology. Learning and Individual Differences, 12, 317-345. 
  • Geary, D. C. (2005).  The origin of mind:  Evolution of brain, cognition, and general intelligence.  Washington, DC:  American Psychological Association.
  • Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 279-295. 
  • McCauley, R. (2000).  The naturalness of religion and the unnaturalness of science. In: F. Keil & R. Wilson (eds.), Explanation and cognition, pp. 61-85. Cambridge, MA: MIT Press. 
  • McCauley, R. (2011).  Why religion is natural and science is not. Oxford: Oxford University Press. 
  • Mercier, H. & Heintz, C. (2013). The place of evolved cognition in scientific thinking. Religion, brain, and behavior, 3, 2, 128-134.
  • Pigliucci, M. (2010).  Nonsense on stilts : How to tell science from bunk. Chicago : University of Chicago Press. 
  • Pinker, S. (1997). How the mind works. New York : W. W. Norton.
  • Pinker, S. (2002). The blank slate. New York : Viking.
  • Sweller, J. (2008). Instructional implications of David C. Geary’s Evolutionary’s educational psychology. Educational psychologist, 43, 4, 214-216.
  • Van der Henst, J-B. & Mercier, H., Eds. (2009). Darwin en tête! L’évolution et les sciences cognitives. Grenoble : PUG.
  • Carruthers, P. (2002). The roots of scientific reasoning: infancy, modularity, and the art of tracking In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press.
  • Carruthers, P., Stich, S., Siegal, M. (2002). The cognitive basis of science. Cambridge : Cambridge University Press. 
  • Clark, A. (1997). Being There: Putting Brain, Body and World Together Again. Cambridge: MIT Press.
  • Clark, A. & Chalmers, D. (1998). The extended mind. Analysis, 58, 1, 7-19.
  • Dawkins, R. (2004). The Ancestor's Tale. Boston: Houghton Mifflin.
  • Diamond, J. (1991). The Third Chimpanzee: The Evolution and Future of the Human Animal. New York: Harper Collins. 
  • D'Errico, F., & A. Nowell, A. (2000). A New Look at the Berekhat Ram Figurine: Implications for the Origins of Symbolism. Cambridge Archeological Review, 10,  123 –167. 
  • Feist, G.J. (2006). The Psychology of Science and the Origins of the Scientific Mind. New Haven, CT: Yale University Press.
  • Feist, G.J. & Gorman, M.E. (Eds.) (2013). Handbook of the Psychology of Science. New York: Springer Publishing. 
  • Geison, G.L. (1985). The private science of Louis Pasteur. Princeton, NJ : Princeton University Press. 
  • Henshilwood, C.S., d’Errico, F. & Watts, I. (2009). Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. Journal of Human Evolution, 57, 27-47.
  • Hutchins, E. (1995). Cognition in the wild. Cambridge, MA : MIT Press.
  • Karmiloff-Smith, A. (1992). Beyond Modularity: A. Developmental Perspective on Cognitive Science. Cambridge, MA: MIT Press.
  • Liebenberg, L. (1990). The art of tracking, the origin of science. Claremont: David Philip Publishers. 
  • McCauley, R. (2000).  The naturalmness of religion and the unnaturalness of science. In: F. Keil & R. Wilson (eds.), Explanation and cognition, pp. 61-85. Cambridge, MA: MIT Press. 
  • Mithen, S.J. (1996) The prehistory of the mind: A search for the origins of art, religion, and science, London : Thames and Hudson.
  • Mithen, S., ed. (1998). Creativity in Human Evolution and Prehistory. London: Routledge.
  • Mithen, S. J. (1999). Problem-solving and the evolution of human culture, London : Institute for Cultural Research, 1999.
  • Mithen, S.J. (2002). Human evolution and the cognitive basis of science. In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press.
  • Mithen, S.J. (2007). Seven steps in the evolution of the human imagination. In: Roth, I. (ed.) Imaginative Minds. Oxford University Press for The British Academy, Oxford, pp. 3-29.
  • Nersessian, N.J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (ed.) Cognitive Models of Science. University of Minnesota Press. Minneapolis.
  • Nersessian, N.J. (1998). Conceptual change. In Bechtel, W. & Graham, G. (eds.) A Companion to Cognitive Science. Blackwell, Malden, MA. 155-166.
  • Nersessian, N.J. (2005). Interpreting scientific and engineering practices: Integrating the cognitive, social, and cultural dimensions. In M. Gorman, R. Tweney, D. Gooding, & A. Kincannon (eds.), Scientific and Technological Thinking, pp. 17-56. Hillsdale, NJ: Erlbaum. 
  • Nersessian, N.J. (2008) Creating Scientific Concepts. Cambridge, MA: MIT Press.
  • Pickering, A. (1995). The mangle of practice. Tima, agency, and practice. Chicago, IL : University of Chicago Press. 
  • Povinelli (2003). Folk physics for apes: The chimpanzee's theory of how the world works. Oxford: Oxford University Press. 
  • Shapin, S. & Shaffer, S. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life. Princeton, NJ : Princepton University Press.  
  • Sherwood, C.C., Subiaul, F., and Zawidzki, T.W. A natural history of the human mind: tracing evolutionary changes in brain and cognition. Journal of anatomy, 212, 4, 426-454.
  • Sterelny, K. (2012). The evolved apprentice. Cambridge, MA : MIT Press.
  • Watson, J.D. (1968). The double helix : A personal account of the discovery of the structure of DNA. New York : Atheneum. 
  • Whiten, A., Goodall, J., McGrew, W.C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin, C.E.G., Wrangham, R.W., Boesch, C.  (1999). Cultures in chimpanzees. Nature, 399, 6737, 682-685.
  • Whiten, A. Horner, V., de Waal, F.B.M.  (2005). Conformity to cultural norms of tool use in chimpanzees. Nature, 437, 7059, 737-740.
The unnatural nature of science 
  • AA.VV. (2013). Book symposium : Robert McCauley’s Why religion is natural and science is not. Religion, Brain & Behavior, 3, 2, 89-182.
  • Atran, S. (2002). In gods we trust. Oxford: Oxford University Press.
  • Boyer, P. (1994). The naturalness of religious ideas. Berkeley, CA: University of California Press.
  • Calabi, C. (2012). Perceptual illusions. Philosophical and psychological essays. New York : Palgrave MacMillan.
  • Dawkins, R. (1986). The blind watchmaker. New York: W. W. Norton & Company.
  • Dawkins, R. (2006). The God Delusion. Boston: Houghton Mifflin.
  • Dunbar K. (1995). How scientists really reason: scientific reasoning in real-world laboratories. In: Sternberg R, Davidson J. (eds.), The Nature of Insight, pp. 365–396. Cambridge, MA: MIT Press.
  • Dunbar, K., Blanchette, I. (2001). The in vivo/in vitro approach to cognition: the case of analogy. Trends in Cognitive Science, 5, 334-339.
  • Evans, J. St. B. T. (2010). Intuition and reasoning: A dual-process perspective. Psychological Inquiry, 21, 313–326.
  • Feynman, R.P. (2010). Surely You're Joking, Mr. Feynman! Adventures of a Curious Character. New York: W. W. Norton & Co.
  • Gigerenzer, G., & Gaissmaier, W. (2011).  Heuristic decision making. Annual Review of Psychology, 62, 451–482.
  • Gilovich, T. (1991). How we know what isn't so: The fallibility of human reason in everyday life. New York: The Free Press.
  • Kahneman, D. (2011). Thinking Fast and Slow. New York: Allen Lane. 
  • Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
  • Keil, F. (2010). The feasibility of folk science. Cognitive science, 34, 826-862.
  • Mahoney, M.J. (1977). Publication prejudices: An experimental study of confirmatory bias in the peer review system. Cognitive Therapy and Research, 1, 161-75.
  • McCauley, R. (2000).  The naturalness of religion and the unnaturalness of science. In: F. Keil & R. Wilson (eds.), Explanation and cognition, pp. 61-85. Cambridge, MA: MIT Press. 
  • McCauley, R. (2011).  Why religion is natural and science is not. Oxford: Oxford University Press. 
  • Mercier, H. & Heinz, C. (2013). The place of evolved cognition in scientific thinking. Religion, brain, and behavior, 3, 2, 128-134.
  • Mercier, H. & Sperber, D. (2010). Why do humans reason? Behavioral and Brain Sciences, 34, 2, 57-74.
  • Mithen, S.J. (1996) The prehistory of the mind: A search for the origins of art, religion, and science, London : Thames and Hudson.
  • Newport, F. (2012). In U.S., 46% hold creationist view of human origins. Gallup Politics.
  • Nickerson, R.S. (1998). Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. Review of General Psychology,  2, 2, 175–220.
  • Pinker, S. (1997). How the mind works. New York : W. W. Norton.
  • Pinker, S. (2002). The blank slate. New York : Viking.
  • Shepard, R. N. (1990). Mind sights: original visual illusions, ambiguities, and other anomalies, with a commentary on the play of mind in perception and art. New York: W.H. Freeman & Co.
  • Stanovich, K. E. (2004). Balance in psychological research: The dual process perspective. Behavioral and Brain Sciences, 27, 357-358.
  • Wolpert, L. (1994). The unnatural nature of science. Cambridge, MA: Harvard University Press.
Scaffolds for scientific cognition 
  • Berney, S. & Bétrancourt, M. (2009). When and why does animation enhance learning? Communication to EARLI 2009 - Symposium "Designing effective dynamic and static visualizations in complex learning envioronment".
  • Bétrancourt, M. & Chassot, A. (2008). Learning with animation. Cambridge, MA: Cambridge University Press.
  • Bialystok, E. (2001). Bilingualism in development: Language, literacy, and cognition. New York: Cambridge University Press.
  • Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16, 240-250.
  • Bloom, P. (1994). Language acquisition: Core readings. Cambridge, MA: MIT Press.
  • Bloom, P. (2000). How children learn the meanings of words. Cambridge, MA: MIT Press.
  • Bloom, P. & Keil, F. (1991). Thinking through language. Mind & Language, 16, 4, 351-367.
  • Carruthers, P. (1996). Language, thought, and consciousness. Cambridge: Cambridge University Press.
  • Carruthers, P. (2002). The roots of scientific reasoning: infancy, modularity, and the art of tracking In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press.
  • Carruthers, P. (2008). Language in cognition. In E. Margolis, R. Samuels, & S. Stich (eds.), The Oxford Handbook of Philosophy of Cognitive Science. Oxford: Oxford University Press.
  • Christiansen, M.H. & Kirby, S. (2003). Language evolution: Consensus and controversies. Trends in Cognitive Sciences, 7, 7, 300-307.
  • Chomsky, N. (1972). Language and mind. New York: Harcourt Brace Jovanovich.
  • Clark, A. (1997). Being There: Putting Brain, Body and World Together Again. Cambridge: MIT Press.
  • Clark, A. (1998). Magic words : How language augments human computation. In P. Carruthers and J. Boucher (Eds) Language And Thought: Interdisciplinary Themes, pp. 162-183. Cambridge: Cambridge University Press.
  • Clark, A. & Chalmers, D. (1998). The extended mind. Analysis, 58, 1, 7-19.
  • Dawkins, R. (1982). The Extended Phenotype. Oxford: Oxford University Press.
  • Dawkins, R.  & Krebs, J.R.  (1978). Animal signals: information or manipulation. In Krebs, J. R., and Davies, N. B., eds., Behavioural Ecology: An Evolutionary Approach, pp. 282–309. Oxford: Blackwell Scientific Publications.
  • Dehaene, S. (2005). From monkey brain to human brain: A fyssen foundation symposium. Cambridge, MA: The MIT Press.
  • Dehaene, S. (2007). Les neurones de la lecture. Paris: Odile Jacob.
  • Dehaene, S. (2011). Apprendre à lire. Des sciences cognitives à la salle de classe. Paris: Odile Jacob.
  • Dehaene, S. & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 2, 384-398.
  • Dennett, D. (1991). Consciousness Explained. London: Penguin Books.
  • Dunbar, R. I. M., (1998). Grooming, Gossip and the Evolution of Language. Cambridge, MA: Harvard University Press.
  • Feynman, R.P. (2010). Surely You're Joking, Mr. Feynman! Adventures of a Curious Character. New York: W. W. Norton & Co.
  • Fodor, J.A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press. 
  • Giere, R. (1988). Explaining science. A cognitive approach. Chicago, IL : University of Chicago Press.
  • Giere, R. (2002). Scientific cognition and distributed cognition. In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press.
  • Gould, S.J. (1987). The limits of adaptation: is language a spandrel of the human brain? Unpublished paper delivered to the Center for Cognitive Science, MIT.
  • Hermer-Vazquez, L., Spelke, E. S., and Katsnelson, A. (1999). Sources of flexibility in human cognition: Dual-task studies of space and language. Cognitive psychology, 39, 3-36.
  • Hutchins, E. (1995). Cognition in the wild. Cambridge, MA : MIT Press.
  • Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19, 265-288.
  • Keysar, B., Hayakawa, S. & An, S. (2012). The foreign language effect: Thinking in a foreign tongue reduces decision biases. Psychological Science, 23, 661–668.
  • Jackendoff, R. (2002). Foundations of Language: Brain, Meaning, Grammar, Evolution. Oxford: Oxford University Press.
  • Jackendoff, R. (2007). Language, Consciousness, Culture: Essays on Mental Structure (Jean Nicod Lectures). Cambridge, MA: MIT Press.
  • Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words, Cognitive Science, 11, 65-99.
  • Levie, H. & Lentz, R. (1982). Effects of text illustration : a review of research, Educational Communication and Technology Journal, 30, 195-232.
  • Morrison, J. B., and Tversky, B. (2001). The (In) effectiveness of animation in instruction.  In Jacko, J. and Sears, A. (Editors), Chi 001:  Extended Abstracts. Pp. 377-378.  Danvers, MA:  ACM.
  • Nersessian, N.J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (ed.) Cognitive Models of Science. University of Minnesota Press. Minneapolis.
  • Paivio, A. (1986). Mental representations : a dual coding approach. Oxford: Oxford University Press.
  • Pasquinelli, E. (2009). The notion of representation and the new wave theories of cognition, perception, action. Epistemologia. XXXIII, 279-302.
  • Pinker, S. (2003) Language as an adaptation to the cognitive niche. In M. Christiansen & S. Kirby (Eds.), Language evolution: States of the Art. New York: Oxford University Press.
  • Pinker, S. (2004). The language instinct. New York: Harper Collins. 
  • Pinker, S.  (2007). The stuff of thought : Language as a window into human nature. Cambridge, MA : Harvard University Press.
  • Pinker & Bloom (1990). Natural language and natural selection. Behavioral and brain sciences, 13, 4, 707-784.
  • Sagan, C. (1996). The demon haunted world : Science as a candle in the dark. New York : Random House. 
  • Shusterman, A. & Spelke, E.S. (2005). Language and the development of spatial reasoning, in P. Carruters, S. Laurence & S. Stich (eds.), The innate mind: Structure and contents, Oxford University Press.
  • Tomasello, M. (1999). The Cultural Origins of Human Cognition. Harvard University Press.
  • Tversky, B. (1995). Cognitive origins of graphic conventions. In F. T. Marchese (Ed.). Understanding images, pp. 29-53. New York: Springer-Verlag.
  • Tversky, B. (2001). Spatial schemas in depictions. In M. Gattis (Ed.), Spatial schemas and abstract thought, pp. 79–111. Cambridge, MA: MIT Press.
  • Tversky, B. (2005). Image and reasoning. Tokyo: Keio University Press.
  • Tversky, B. (2011). Visualizing thought. Topics in Cognitive Science, 3, 499-535.
  • Tversky, B., Morrison, J. B., Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247-262. Pour une version française, voir: Betrancourt, M. Morrison, J. B., and Tversky, B. (2001). Les animations sont-elles vraiment plus efficaces?  Revue d'Intelligence Artificielle, 14, 149-166.
  • Wolf, M. (2008). Proust and the squid: The story and science of the reading brain. New York: Harper Perennial.
  • Whorf, B. (1956). Language, Thought and Reality. Hoboken, NJ: Wiley.
  • Willingham, D. (2010). Why children don’t like school ? New York : Jossey Bass.
Teaching science
  • AAAS (1989). Science for all Americans. Project 2061. New York: Oxford University Press.
  • AAAS (1993). Benchmarks for science literacy. Project 2061. New York: Oxford University Press.
  • AAAS (1998). Blueprints for reform. Project 2061. New York: Oxford University Press.
  • AAAS (2001). Atlas of science literacy. AAAS Project 2061. 
  • Ajchenbaum-Boffety, B. (2004). Sciences à l’école : Quelle histoire ! Lyon : INRP. Alberts, B. (2008). Considering Science Education. Science, 319, 1589.
  • Alberts, B. (2009). Redefining Science Education. Science, 323, 437.
  • Alfieri, L., Brooks, P., Aldrich, N., Tenenbaum, H. (2011). Does discovery-based instruction enhance learning? Journal of education psychology, 103, 1, 11-18.
  • ALLEA Working Group Science Education (2012). A renewal of science education in Europe. Views and Actions of National Academies. ALLEA.
  • Allende, J. (2008). Academies active in education. Science, 321, 1133.
  • Anderson, J.R., Reder, L.M., Simon, H.A. (1998). Radical constructivism and cognitive psychology. In D. Ravitch (Ed.) Brookings papers on education policy 1998. Washington, DC: Brookings Institute Press.
  • Arenilla, L., Gossot, B., Rolland, M.-C., Roussel, M.P. (1996). Dictionnaire de pédagogie. Paris : Bordas.
  • Astolfi, J.-P., Peterfalvi, B., Vérin, A. (2001). Comment les enfants apprennent les sciences. Paris: Retz.
  • Astolfi, J.-P., Dévelay, M. (1989). La didactique des sciences. Paris: PUF.
  • Bain, A. (1882). La science de l’éducation. Paris : Librairie Germer Baillière et Cie. http://gallica.bnf.fr/ark:/12148/bpt6k2101333.
  • Barrow, L.H. (2006). A brief history of inquiry: From Dewey to Standards. Journal of science teacher education, 17, 265-278.
  • Baudrit, A. (2005). L’apprentissage coopératif : origines et évolutions d’une méthode pédagogique. Bruxelles: De Boek.
  • Borda Carulla, S. (ed.) (2012). Background resources for implementing inquiry in science and mathematics at school. Fibonacci Project.
  • Borda Carulla, S. (2012). Fibonacci Project. Companion resources for implementing inquiry in science education. Tools for enhancing inquiry in science education. Fibonacci Project. http://fibonacci.uni-bayreuth.de/resources/resources-for-implementing-inquiry.html
  • Bordallo, I. & Ginestet, J.-P., (1993). Pour une pédagogie du projet. Paris: Hachette.
  • Boulanger, P. (2005). Fallait-il réviser Le Tour de la France ? Les Génies de la Science, 23, 23-25.
  • Bruner, J. (1960, éd. 1977). The process of education. Cambridge, MA: Harvard University Press. 
  • Buisson, F. (1911). « Leçon de choses », dans : Dictionnaire de pédagogie.
  • Calmettes, B. (2009). Démarche d’investigation en physique. Des textes officiels aux pratiques de classe. Spirale, 43, 139-149.
  • Calmettes, B.  (éd.) (2012). Démarches d’investigation : références, représentations, pratiques et formation. Paris : L’Harmattan.
  • Carbonnel, J. & George, J. (dir.) (1996). La pédagogie coopérative. Cahiers Pédagogiques, 347.
  • Charpak, G. (1996). La main à la pâte. Les sciences à l'école primaire. Paris: Flammarion.
  • Charpak, G. (1998). Enfants, chercheurs et citoyens. Paris: Odile Jacob.
  • Charpak, G. Léna, P.  & Quéré, Y.  (2005). L'enfant et la science. L'aventure de La main à la pâte. Paris: Odile Jacob.
  • Chen, Z. & Klahr, D. (1999). All Other Things Being Equal: Acquisition and Transfer of the Control of Variables Strategy. Child Development, 70, 5, 1098-1120.
  • Clark, R.C., Nguyen, F., and Sweller, J. (2006). Efficiency in learning: evidence-based guidelines to manage cognitive load. San Francisco: Pfeiffer. 
  • Commission européenne – Groupe de haut niveau sur l’enseignement scientifique (Michel Rocard, prés.) (2007). L’enseignement scientifique aujourd’hui : Une pédagogie renouvelée pour l’avenir de l’Europe. Bruxelles : Office des publications officielles des Communautés européennes.
  • Da Silva, V.A. (2004). Savoirs quotidiens et saviors scientifiques: L’élève entre deux mondes. Paris: Economica.
  • Darley B. (2007). La démarche d'investigation et son vocabulaire. Grand N, 79, 99-112.
  • de Hosson C. (2007). Using historical reconstruction to implement inquiry-based teaching in primary school. Proceedings of the 3rd south-east european conference for Hands'on primary science education, october 14-17, 2007, Belgrade, Serbia. 1-9.
  • de Hosson, C. (2013). La démarche d'investigation, entre démarche pédagogique et démarche scientifique. 22e congrès de la Société Française de Physique, 1-5 juillet 2013, Marseille : France.
  • De Hosson, C. (2013). Communication donnée à l’Académie des sciences, lors d’un séminaire international de la Fondation La main à la pâte, 2013.
  • Dean, D. & Kuhn, D. (2006). Direct instruction vs. discovery: The long view. Science Education, 91, 3, 384-397.
  • Delclaux, M. & Saltiel, E. (2013). An evaluation of local teacher support strategies for the implementation of inquiry-based science education in French primary schools. Education 3-13, 41, 2 138-159.
  • Dewey, J. (1910). How we think. New York: D.C Heath & Co. Publishing.
  • Dewey, J. (1910). Science as a subject-matter and as a method. Science, 31, 787, 121-127.
  • Dewey, J. (1938). Experience and education. New York: Kappa Delta Pi.
  • Dewey, J. (1938). Logic: The theory of inquiry. New York: Henry Holt and Co.
  • Dow, P. (1999). Sputnik revisited: Historical perspectives on science reform. Paper presented at the conference Reflecting on Sputnik: Linking the past, present, and future of educational reform, Center for Science, Mathematics, and Engineering Education.
  • Ernst, S. (1997). Refonder l’enseignement scientifique. Un grand projet pour l’école. Revue internationale déducation de Sèvres, 14. http://ries.revues.org/3350
  • Flick, L.B. (1993). The meanings of hands-on science. Journal of Science Teacher Education, 4, 1, 1-8.
  • Furtak, E.M., Shavelson, R., Shemwell, J., Figueroa, M. (2012). Teach or not to teach through inquiry. In: S. Carver & J. Shrager, The journey from child to scientist, Washington, DC: Americal Psychological Association.
  • Giordan, A. (1999). Une didactique des sciences expérimentales. Paris : Belin.
  • Giordan, A. & DeVecchi, G. (2002). L'enseignement scientifique comment faire pour que ça marche ? Paris: Delagrave.
  • Hameline D., Jornod A., Belkaïd M. (Eds.) (1995). L'école active. Textes fondateurs. Paris: PUF.  
  • Harlen, W. (2006). Teaching, learning and assessing science 5-12. London: SAGE publications. 
  • Harlen, W. (2013). Assessment & Inquiry-Based Science Education: Issues in policy and practice. Global Network of Sciences Academies (IAP) Science Education Programme.
  • Harlen, W. (ed.) (2010). Principles and big ideas of science education. Hatfield: ASE.
  • Harlen, W. (2012). Enseigner les sciences. Comment faire ? Paris : Le Pommier.
  • Harlen, W.  & Allende, J. (dir.), Groupe Interacadémies sur des questions internationales (2006). Rapport du Groupe de travail sur la Collaboration Internationale pour L’Évaluation des Programmes D’Enseignement Scientifique Fondés sur L’Investigation (ESFI). IAP.
  • Harlen, W. & Groupe de travail de l’IAP (2009). Pour une pédagogie d'investigation dans l'enseignement scientifique. Une synthèse à l'usage du monde de l'éducation. IAP.
  • Harlen, W. & Qualter, A. (2009). The teaching of science in primary schools. London : David Fulton Publishers.
  • Hassard, J. (2005). The art of teaching science. Oxford: Oxford University Press. 
  • Hébrard, J. (n. d.) : L’histoire de l’enseignement des sciences en France.  http://www.fondation-lamap.org/fr/page/14613/lhistoire-de-lenseignement-des-sciences-en-France
  • Herron, M.D. (1971). The nature of scientific enquiry. The school review, 79, 2, 171-212.
  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark. Educational psychologist, 42, 2, 99-107.
  • Kahn,  P. (2002). La leçon des choses. Naissance de l’enseignement des sciences à l’école primaire. Villeneuve d'Ascq: Presses Universitaires du Septentrion. 
  • Kirshner, P., Sweller, J., Clark R., (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational psychologist, 41, 2, 75-86.
  • Kirshner, P., Sweller, J., Clark R., (2007). Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. Educational Psychologist, 42, 2, 115-121.
  • Klahr, D. (2009). “To every thing there is a season, and a time to every purpose under the heavens”: What about Direct Instruction? In S. Tobias and T. M. Duffy (Eds.) Constructivist Theory Applied to Instruction: Success or Failure? London: Taylor and Francis.
  • Klahr, D. & Nigam, M. (2004). The equivalence of learning paths in early science instruction: effects of direct instruction and discovery learning. Psychological Science, 15, 661–667.
  • Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical vs. virtual materials in an engineering design project by middle school students. Journal of Research in Science Teaching, 44, 183–203.
  • Léna, P. (2009). Europe rethinks education. Science, 396, 5952, 501.
  • Léna, P. (2011). International evidence shows teachers’ preparation is vital. In: Wellcome Trust: Inquiry-based learning, pp. 8-11. London: Wellcome Trust.
  • Léna, P. (2012). Enseigner c’est espérer. Paris : Le Pommier.
  • Léna, P., Quéré, Y., Salviat, B. (2009). 29 notions clé pour savourer et faire savourer la science. Paris : Le Pommier.
  • Martin-Hansen, L. (2002). Defining inquiry. The science teacher, 69, 2, 34-37.
  • Mathé, S., Méheut, M.,  & de Hosson, C. (2008). Démarche d'investigation au collège: quels enjeux? Didaskalia, 32, 41-48.
  • MEN (2000). Plan de rénovation de l'enseignement des sciences et de la technologie à l'école. BO, 23, 15 juin. 
  • MEN (2006). Le Socle commun des connaissances et des compétences. Décret du 11 juillet 2006. Tout ce qui est obligatoire de maîtriser à la fin de la scolarité obligatoire. Paris : Scérén, CNDP. 
  • MEN (2013). Les programmes de l’école élémentaire. http://www.education.gouv.fr/cid38/horaires-et-programmes.html
  • MEN, Académie des sciences, La main à la pate (2002). Enseigner les sciences à l'école. Outil pour la mise en oeuvre des programmes. Cycles 1, 2 et 3. Paris: CNDP.
  • MEN, Académie des sciences, INRP (2000). La main à la pâte et le plan de rénovation de l'enseignement des sciences et des technologies à l'école. Guide de découverte. Paris: INRP.
  • MEN, Académie des sciences, La main à la pate, Académie des technologies (2002).  Documents d'accompagnement des programmes 2002. Découvrir le monde à l'école maternelle. Outil pour la mise en oeuvre des programmes 2002. Paris: CNDP.
  • Meuret, D. (2007). Gouverner l’école. Une comparaison France/Etats Unis. Paris : PUF. 
  • Meuret, D. (2011). Éducation, Démocratie, Espérance. In : Dewey J., Démocratie et éducation suivi de Expérience et éducation. Paris : Armand Colin.
  • Minstrell, J. & van Zee, E.H. (Eds.) (2000). Inquiring into inquiry learning and teaching in science. Washington, DC: AAAS.
  • Minner, D., Jurist Levy, A., Century, J. (2010). Inquiry-Based Science Instruction Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47, 474-496.
  • Monod-Ansaldi, R. & Prieur, M. (2011). Démarches d’investigation dans l’enseignement secondaire : représentations des enseignants de mathématiques, SPC, SVT et techologie. Rapport d’enquête IFÉ-ENS. Lyon : IFÉ-ENS.
  • NRC (1996). National science education standards. Washington, DC: National Academies Press. 
  • NRC (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. Washington, DC: National Academies Press. 
  • NRC (2012). A framework for K-12 science education. Washington, DC: National Academies Press. 
  • NRC (2013). Next generation science standards. Washington, DC: National Academies Press. 
  • NSTA (1982). Search for excellence in science education. Reston, VA : NSTA Press.
  • OECD (2006). Evolution of students’ interest in science and technology studies Policy report, OECD Global science Forum,  Paris : OECD.
  • OECD (2008). Ensouraging students’ interest in science and technology studies. OECD Global science Forum.  Paris : OECD.
  • Osborne, J. & Dillon, J. (2008). Science education in Europe: Critical reflections. London: The Nuffield Foundation.
  • Rojat (n. d.) : La démarche d’investigation. http://www.fondation-lamap.org/fr/page/17793/la-demarche-dinvestigation 
  • Ruffenach, M. (2006). La démarche d’investigation au collège … Mission possible ? BUP, 100, 886, 847-885.
  • Rutherford, F.J. (1964). The role of inquiry in science teaching. Journal of Research in Science Teaching, 2, 80-84.
  • Saltiel, E. (2001). Les leçons de choses et La main à la pâte. In N. Hulin (Ed.), Etudes sur l'histoire de l'enseignement des sciences physiques et naturelles (pp. 111-134). Lyon : ENS Editions.
  • Saltiel (n. d.) : La démarche d’investigation. Comment faire en classe ? http://www.fondation-lamap.org/fr/page/11324/la-d-marche-dinvestigation-comment-faire-en-classe 
  • Sarmant, J.-P. (1999). Rapport sur l'opération La main à la pâte, l'enseignement des sciences à l'école primaire. Paris: MEN (Ministère de l’éducation nationale).
  • Sarmant, J.-P., Saltiel, E. Léna, P. (2010). La main à la pâte. Implementing a plan for science education reform in France. In G.E. de Boer (Ed.), The role of public policy in K-12 science education. Charlotte, NC: Information Age Publishing. 
  • Schwab, J. (1960). Inquiry, the science teacher, and the educator. The School Review, 68, 2, 176-195.
  • Schwab, J. (1962). The teaching of science as inquiry. In : J. Schwab & S.S. Brandewein, The teaching of science. Cambridge, MA : Harvard University Press.
  • Sommaruga, J. (2013). Rapport pour avis sur l'enseignement des sciences au primaire et au collège. Avis n°1429, Assemblée Nationale.
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 2, 257-285.
  • Tobias, S. & Duffy, T.M.  (Eds.) Constructivist Theory Applied to Instruction: Success or Failure? London: Taylor and Francis.
  • UNESCO (2010). Current challenges in basic science education. Paris : UNESCO Publishing.
  • Venturini, P. & Tiberghien, A. (2012). La démarche d’investigation dans le cadre des nouveaux programmes de sciences physiques et chimiques : étude de cas au college. Revue française de pédagogie, 180, 95-120.
  • Vial, J., (1986), Histoire et actualité des méthodes pédagogiques, Paris: ESF.
  • Vince, J., Monod-Ansaldi, R., Prieur, M., Fontanieu, V., & Perret, J.-P. (2011). Représentations des enseignants sur leur discipline, les démarches d’investigation, et quelques concepts- clés : expliciter pour mieux interagir. Paper presented at the congrès de l’Union des professeurs de physique et chimie, Montpellier.
  • Wellcome Trust (2011). Perspectives on education: Inquiry-based learning. London: Wellcome Trust.
  • Worth, K. Saltiel, E., Duque, M. (n. d.). L'enseignement des sciences fondé sur l'investigation. Conseils pur les enseignants http://www.fondation-lamap.org/fr/page/11941/lenseignement-des-sciences-fond-sur-linvestigation 
  •  Worth, K. Duque, M. Saltiel, E.  (n.d.). Designing and implementing inquiry-based science units for primary education http://www.fondation-lamap.org/sites/default/files/upload/media/Guide_Designing%20and%20implementing%20IBSE_final_light.pdf.
Teaching science: direct teaching vs. inquiry 


  • Académie des sciences (2007).  La formation des professeurs à l’enseignement des sciences.
  • Académie des sciences (2009).  "Mastérisation" Le dispositif de formation et de recrutement des professeurs enseignant les sciences (école, collège, lycée).
  • Académie des sciences (2010).  La formation continue des professeurs enseignant les sciences à l'école, au collège, au lycée.
  • Adey, P., Robertson, A., Veinville, G. (2002). Effects of a cognitive acceleration programme on year 1 pupils. Journal of Educational Psychology, 72, 1-25.
  • Anderson, R. (2002). Reforming Science Teaching: What Research says about Inquiry, Journal of Science Teacher Education, 13, 1, 1-12.
  • Anderson, J.R., Reder, L.M., Simon, H.A. (1998). Radical constructivism and cognitive psychology. In D. Ravitch (Ed.) Brookings papers on education policy 1998. Washington, DC: Brookings Institute Press.
  • Anderson, J.R., Reder, L.M., Simon, H.A. (2000). Applications and misapplications of cognitive psychology to mathematics education. Texas educational review. 
  • Alfieri, L., Brooks, P., Aldrich, N., Tenenbaum, H. (2011). Does discovery-based instruction enhance learning? Journal of education psychology, 103, 1, 11-18.
  • Banchi, H. & Bell, R. (2008). The many levels of inquiry. Science & children, 46, 2, 26-29.
  • Brabeck, M. (2008). Why We Need ‘Translational’ Research: Putting Clinical Findings to Work in Classrooms. Education Week, 27, 38, 28, 36.
  • Bransford, J.D., Brown, A.L., & Cocking, R.R. (2000). How people learn: brain, mind, experience, and school. Washington, DC: National Academies Press.
  • Capps, D. & Crawford, B. (2013). Inquiry-Based Instruction and Teaching About Nature of Science: Are They Happening? Journal of Science teachers education, 24, 497-526. 
  • Carver, S.  & Shrager, J. (2012). The journey from child to scientist. Integrating cognitive development and the education sciences. Washington, DC: American Psychological Association.
  • Chanquoy, L., Tricot, A., Sweller, J. (2007). La charge cognitive. Paris: Armand Colin. 
  • Charpak, G. (1996). La main à la pâte. Les sciences à l'école primaire. Paris: Flammarion.
  • Chen, Z. & Klahr, D. (1999). All Other Things Being Equal: Acquisition and Transfer of the Control of Variables Strategy. Child Development, 70, 5, 1098-1120.
  • Dean, D. & Kuhn, D. (2006). Direct instruction vs. discovery: The long view. Science Education, 91, 3, 384-397.
  • Fischer, K., Goswami, U., Geake, J., The Task Force on the Future of Educational Neuroscience (2010). The Future of Educational Neuroscience, Mind, Brain, and Education, 4, 2, 68-80.
  • Flick, L. (1995). Complex instruction in complex classrooms: A synthesis of research on inquiry teaching methods and explicit teaching strategies. Paper presented at the Annual meeting of the National Association for Research in Science Teaching, Sanf Francisco, CA.
  • Furtak, E.M., Shavelson, R., Shemwell, J., Figueroa, M. (2012). Teach or not to teach through inquiry. In: S. Carver & J. Shrager, The journey from child to scientist, Washington, DC: Americal Psychological Association.
  • Gick, M. L. & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355.
  • Gick, M. L. & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38.
  • Harlen, W. (2001). Primary science: Taking the plunge. Portsmouth, NH: Heinemann.
  • Harlen, W. (2006). Teaching, learning and assessing science 5-12. London: SAGE publications. 
  • Harlen, W. & Qualter, A. (2009). The teaching of science in primary schools. London : David Fulton Publishers.
  • Harlen, W. (2013). Assessment & Inquiry-Based Science Education: Issues in policy and practice. Global Network of Sciences Academies (IAP) Science Education Programme.
  • Harwood, W. (2004). A new model for inquiry. Journal of college science teaching, 33, 7, 29-33.
  • Harwood, W., Reiff, R., & Phillipson, T. (2002). How is your lawnmower Working? Understanding scientific inquiry through metaphors. 2002 AETS Proceedings.
  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark. Educational psychologist, 42, 2, 99-107.
  • Kirshner, P., Sweller, J., Clark R., (2006). Why minimal guidance during instruction does not work : An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational psychologist, 41, 2, 75-86.
  • Kirshner, P., Sweller, J., Clark R., (2007). Why Minimally Guided Teaching Techniques Do Not Work: A Reply to Commentaries. Educational Psychologist, 42, 2, 115-121.
  • Klahr, D. (2009) “To every thing there is a season, and a time to every purpose under the heavens”: What about Direct Instruction? In S. Tobias and T. M. Duffy (Eds.) Constructivist Theory Applied to Instruction: Success or Failure? London: Taylor and Francis.
  • Klahr, D. & Nigam, M. (2004). The equivalence of learning paths in early science instruction: effects of direct instruction and discovery learning. Psychological Science, 15, 661–667.
  • Kuhn, D. (2005). Education for thinking. Cambridge, MA: Harvard University Press.
  • Léna, P. (2009). Europe rethinks education. Science, 396, 5952, 501.
  • Léna, P. dans Wellcome Trust (2011), International evidence shows teachers’ preparation is vital. Inquiry-based learning, pp. 8-11. London: Wellcome Trust.
  • Marsh, E.J., Roediger, H.L., Bjork, R.A., Bjork, E.L. (2007). The memorial consequences of multiple-choice testing. Psychonomic Bulletin & Review, 6, 194-199.
  • Martin-Hansen, L. (2002). Defining inquiry. The science teacher, 69, 2, 34-37.
  • Mayer, R. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59,  1,  14-19.
  • NRC (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. Washington, DC: National Academies Press. 
  • Pasquinelli, E. (2011). Knowledge- and evidence-based education: reasons, trends, contents. Mind, Brain, and Education, 5, 4, 186-195.
  • Pasquinelli, E. (2013). Education needs science. Is medicine a suitable source of inspiration? In: Jean B. Laewen. Capacity Building and Development: Perspectives, Opportunities and Challenges. Happauge, NY: Nova Science Publishers. 
  • Pasquinelli, E. (2013). Slippery slopes. Some considerations for favoring a good marriage between education and the science of the mind–brain–behavior, and forestalling the risks. Trends in neuroscience and education. 111-121.
  • Perruchet, P. & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10, 233-238. 
  • Reiff, R., Harwood, W., & Phillipson, T. (2002). A scientific method based upon research scientists' conceptions of scientific inquiry. 2002 AETS Proceedings.
  • Robinson, W.R.  (2004). The Inquiry Wheel, an Alternative to the Scientific Method. Journal of Chemical Education, 81, 6, 791-792.
  • Saltiel (n. d.) : La démarche d’investigation. Comment faire en classe ? http://www.fondation-lamap.org/fr/page/11324/la-d-marche-dinvestigation-comment-faire-en-classe 
  • Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32, 102–119.
  • Schwartz, D. L. & Bransford, J. D. (1998). A time for telling. Cognition & Instruction, 16, 475-522.
  • Tricot, A. (1998). Charge cognitive et apprentissage. Une présentation des travaux de John Sweller. Revue de psychologie de l’éducation, 1, 37-64.
  • Worth, K. Saltiel, E., Duque, M. (n. d.). L'enseignement des sciences fondé sur l'investigation. Conseils pur les enseignants http://www.fondation-lamap.org/fr/page/11941/lenseignement-des-sciences-fond-sur-linvestigation 
  •  Worth, K. Duque, M. Saltiel, E.  (n.d.). Designing and implementing inquiry-based science units for primary education http://www.fondation-lamap.org/sites/default/files/upload/media/Guide_Designing%20and%20implementing%20IBSE_final_light.pdf.
  • Zimmermann, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental review, 27, 172-223.
  • Zohar, A., & Peled, B. (2008). The effects of explicit teaching of metastrategic knowledge on low- and high-achieving students. Learning and Instruction, 18, 4, 337-353.
Contributions from studies in cognitive science
  • AAVV (2008). The Jossey-Bass reader on the brain and learning. San Francisco, CA: Jossey-Bass-Wiley.
  • Agarwal, P.K., Bain, P.M., & Chamberlain, R.W. (2012). The value of applied research: Retrieval practice improves classroom learning and recommendations from a teacher, a principal, and a scientist. Educational Psychology Review, 24, 437-448.
  • Ajchenbaum-Boffety, B., & Léna, P. (eds.) (2008). Education, sciences cognitives et neurosciences. Quelques réflexions sur l'acte d'apprendre. Paris: PUF.
  • Baron-Cohen, S. (2003). The essential difference: The truth about the male and female brain. New York: Basic Books. 
  • Battro, A., Fischer, K., Léna, P. (2008). The educated brain. Essays in neuroeducation. Cambridge, MA: Cambridge University Press.
  • Beilock, S., Gunderson, E.A., Ramirez, G., Levin, S.C. (2010). Female’s teachers math anxiety affects girls’ math achievement. PNAS, 107, 5, 1860-1863.
  • Bennett et al. (2005). A systematic review of the nature of small-group discussions aimed at improving students' understanding of evidence in science. Department of educational studies. Research paper.
  • Ben-Zeev, T., Duncan, S., & Forbes, C. (2005). Stereotypes and math performance. In J.I.D. Campbell (Ed.), Handbook of mathematical cognition (pp. 235-249). New York: Psychology Press.
  • Blakemore, J.E.O., Berenbaum, S.A., Liben, L.S.  2009). Gender development. New York: Psychology Press. 
  • Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In M. A. Gernsbacher, R. W. Pew, L. M. Hough, & J. R. Pomerantz (Eds.), Psychology and the real world: Essays illustrating fundamental contributions to society, pp. 56-64. New York: Worth Publishers.
  • Bjork, R.A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe and A. Shimamura (Eds.), Metacognition: Knowing about knowing, pp.185-205. Cambridge, MA: MIT Press.
  • Bransford, J.D., Brown, A.L., & Cocking, R.R. (2000). How people learn: brain, mind, experience, and school. Washington, D.C.: National Academies Press.
  • Bruer, J. (1993). Schools for thought. Cambridge, MA: MIT Press.
  • Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20, 633-642.
  • Ceci S.J., Williams,  W.M. (eds.) (2007). Why aren't more women in science? Washington, DC: APA Books. 
  • Ceci, S.J. & Williams W.M. (2010). Sex differences in math-intensive fields. Current Directions in Psychological Science,  19, 275–279. 
  • Ceci, S.J. & Williams, W.M. (2011). Understanding current causes of women’s underrepresentation in science. PNAS, 108, 8, 3157-3162.
  • Commission générale de terminologie et néologie (2007). Vocabulaire de l’éducation. B.O., 33, 20/09.
  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in
  • real-world laboratories. In R.J. Sternberg & J. Davidson (Eds.), Mechanisms of Insight. Cambridge, MA: MIT Press.
  • Dweck, C. (1986). Motivational processes affecting learning. American Psychologist, 41, 10, 1040-1048.
  • Dweck, C. S. (2002). Beliefs that make smart people dumb. In R. J. Sternberg (Ed.), Why smart people do stupid things. New Haven, CT: Yale University Press.
  • Dweck, C. S. (2006). Mindset: The new psychology of success. New York: Random House.
  • Endrizzi, L. & Rey, O. (2008). L'évaluation au coeur des apprentissages. Dossier de Veille de l’IFÉ, 39.
  • Fiorillo, C.D., Tobler, P.N., Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898-1902.
  • Fischer. K., Daniel, D., Immordino-Yang, H., Stern, E., Battro, A., Koizumi, H. (2007). Why Mind, brain, and education? Why now?  Mind, brain, and education, 1, 1, 1-2. 
  • Frith, U. & Blackemore, S.-J. (2005). The learning brain. London: Wiley-Blackwell.
  • Gaussel, M. & Reverdy, C. (2013). Neurosciences et éducation: La bataille des cerveaux. Dossiers d’actualité IFÉ, 86, 09/2013.
  • Geake, J. (2009). The brain at school. Maidenhead: Open University Press.
  • Geary, D. (1998). Male, female: the evolution of human sex differences. Washington, DC: APA Books.
  • Gentaz, E. & Dessus, P. (2004). Apprentissages et enseignement. Paris: Dunod.
  • Gentaz, E. & Dessus, P. (2004). Comprendre les apprentissages: sciences cognitives et education. Paris: Dunod.
  • Gopnik, A. (2000). Explanation as orgasm and the drive for causal understanding: The evolution, function and phenomenology of the theory-formation system. In F. Keil & R. Wilson (eds.), Cognition and explanation, pp. 299-323. Cambridge, MA: MIT Press.
  • Halpern, D. (2011). Sex differences in cognitive abilities. London: Psychology Press.
  • Halpern, D. F. et al. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8, 1–51.
  • Harlen, W. (2001). Primary science: Taking the plunge. Portsmouth, NH: Heinemann.
  • Harlen, W. (2013). Assessment & Inquiry-Based Science Education: Issues in policy and practice.
  • Harlen, W. & Qualter, A. (2009). The teaching of science in primary schools. London : David Fulton Publishers.
  • Hassard, J. (2005). The art of teaching science. Oxford: Oxford University Press. 
  • Hines, M. (2004). Brain gender. Oxford: Oxford University Press.
  • Hines, M. (2010). Sex-related variation in human behavior and the brain. Trends in Cognitive Sciences, 14, 448–456. 
  • Howard-Jones, P.A. (2009). Introducing neuroeducational research: neuroscience, education and the brain from contexts to practice. London: Routledge.
  • Howard-Jones, P.A.  (2014). Evolutionary perspectives on mind, brain and education.  Mind, brain, and education, 8, 1, 21-33.
  • Howard-Jones, P.A. (2014). Neuroscience and education. A review of educational interventions and approaches informed by neuroscience. London: Education Endowment Foundation.
  • Howard-Jones, P.A. & Demetriou, S. (2009). Uncertainty and engagement with learning games. Instructional Science, 37, 519–536.
  • Howard-Jones, P. A., Demetriou, S., Bogacz, R., Yoo, J. H. & Leonards, U. (2011). Toward a science of learning games. Mind, Brain and Education, 5, 1, 33-41.
  • Hyde, J. (2005). The gender similarities hypothesis. The American psychologist, 60, 6, 58-592.     
  • Hyde, J . et al. (2008). Gender similarities characterize math performance. Science, 321, 5888, 494-495.
  • Huguet, P. & Régner, I. (2007). Stereotype threat among schoolgirls in quasi-ordinary classroom circumstances. Journal of Educational Psychology, 99, 545–560. 
  • Huguet, P., & Régner, I. (2009). Counter-stereotypic beliefs in math do not protect school girls from stereotype threat. Journal of Experimental Social Psychology, 45, 1024-1027.
  • INSERM (2011). Cerveau. Les secrets de l'apprentissage. Science & Santé, 4.
  • Johnson, D.W., Johnson, R.T., & Stanne, M.B. (2000). Cooperative learning methods. A meta-analysis. Methods, 1, 1-33.
  • Kane, M.J. et al. (2004). The generality of working memory: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189-217.
  • Kaplan, K. (2009). Rekindling the gender-bias debate. Nature, 462, 497.
  • Karpicke, J. D., & Roediger, H. L. (2007). Repeated retrieval during learning is the key to long-term retention. Journal of Memory and Language, 57, 151-162.
  • Karpicke, J. D., & Roediger, H. L. (2008). The critical importance of retrieval for learning. Science, 319, 966-968.
  • Karpicke, J. D., & Roediger, H. L. (2010). Is expanding retrieval a superior method for learning text materials? Memory & Cognition, 38, 116-124.
  • Keil, F.C. (2006). Explanation and understanding. Annual Review of Psychology, 57, 227–254.
  • Kimura, D. (2000). Sex and cognition. New York: Bradford Books.
  • Koepp, M.J., Gunn, R.N., Lawrence, A.D., Cunningham, V.J., Dagher, A., Jones, T., Brooks, D.J., Bench, C.H., Grasby, P.M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 6682, 266-268.
  • Kornell, N., Hays, M. J., & Bjork, R. A. (2009). Unsuccessful retrieval attempts enhance subsequent learning. Journal of experimental psychology: Learning, memory and cognition, 35, 989-998.
  • Larsen, D. P., Butler, A. C., & Roediger, H. L. (2009). Repeated testing improves long-term retention relative to repeated study: a randomized controlled trial. Medical Education, 43, 1174-1181. 
  • Mercier, H. & Sperber, D. (2010). Why do humans reason? Behavioral and Brain Sciences, 34, 2, 57-74.
  • Moshman, D. & Geil, M. (1998). Collaborative reasoning: Evidence for collective rationality. Thinking & Reasoning, 4, 231-248.
  • Moss-Racusin, C. et al. (2012). Science faculty’s subtle gender biases favor male students. PNAS, 109-41, 16474-16479.  
  • OCDE-CERI (2002). Comprendre le cerveau: vers une nouvelle science de l'apprentissage. OECD. Paris: OECD Publishing.
  • OECD-CERI (2007). Comprendre le cerveau: naissance d'une science de l'apprentissage. Paris: OECD Publishing. 
  • OECD (2005). Formative assessment : Improving learning in secondary classrooms. Paris : OECD Publishing.
  • Pinker, S. & Spelke, E. (2005). Pinker vs. Spelke. A debate. http://www.edge.org/3rd_culture/debate05/debate05_index.html.
  • Roediger, H. L., & Finn, B. (2010). The pluses of getting it wrong. Scientific American Mind, 21, 1, 38-41.
  • Roediger, H. L., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17, 249-255.
  • Royal Society  (2011). Neuroscience: Implications for education and life-long learning. London: Royal Society.
  • Ryan, R.M. & Deci, E.L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 1, 54-67.
  • Saltiel, E.  & Delclaux, M. (n.d.). Evaluations formative, sommative et diagnostique. http://www.fondation-lamap.org/fr/page/14206/evaluations-formative-sommative-et-diagnostique 
  • Sawyer, R.K. (ed.) (2006). Cambridge Handbook of the Learning Sciences. Cambridge: Cambridge University Press.
  • Schmader, T., & Johns, M. (2003). Converging evidence that stereotype threat reduces working memory capacity. Journal of Personality and Social Psychology, 85, 440-452.
  • Schultz, W., Dayan, P., Montague, P.R. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599.
  • Schultz, W. (2000). Multiple reward systems in the brain. Nature Neuroscience, 1, 199-207.
  • Slavin, R.E. (1996). Research on cooperative learning and achievement: What we know, What we need to know. Contemporary educational psychology, 21, 43-69.  
  • Slavin, R.E. (1988). Cooperative learning and students' achievement. Educational leadership, 31-33. 
  • Slavin, R.E. (2010).  What makes group work work. In OECD The nature of learning. Paris: OECD Publishing.
  • Sommers, C.H. (2009). The science of women in science. Washington, DC : AEI Press. 
  • Spelke, E.S. (2005). Sex differences in intrinsic aptitude for mathematics and science? A critical review.  American Psychologist, 60, 9, 950–958.
  • Spencer, S., Steele, C., Quinn, D. (1999). Stereotype Threat and Women’s Math Performance. Journal of experimental social psychology, 35, 4-28.
  • Steele, C. M. (1997). A threat in the air. How stereotypes shape intellectual identity and performance. American Psychologist, 52, 613-629.æ
  • Stoet, G. & Geary, D. C. (2012). Can stereotype threat explain the gender gap in mathematics performance and achievement? Review of General Psychology, 16, 93.
  • Thorndike, E. (1910). The contribution of psychology to education. The Journal of Educational Psychology, 1, 5-12.
  • TLRP (2000). The implications of recent developments in neuroscience for research on teaching and learning. London: ESRC/TLRP.
  • TLRP (2008). Neuroscience and education: Issues and opportinunities. London: ESRC/TLRP.
  • Trognon, A. (1993). How does the process of interaction work when two interlocutors try to resolve a logical problem? Cognition and Instruction, 11, 3-4,  325-345. 
  • Trout, J.D. (2002). Scientific explanation and the sense of understanding. Philosophy of science, 69, 212-233.
  • Willingham, D. T. (2005/2006). How praise can motivate…or stifle. American Educator, Winter, 48, 23-27.
  • Willingham, D. T. (2007/2008). Should learning be its own reward? American Educator, Winter, 47, 29-35.
  • Willingham, D.T. (2010). Why children don’t like school ? New York : Jossey Bass.
Teaching the nature of science


  • AAAS (1989). Science for all Americans. Project 2061. New York: Oxford University Press.
  • AAAS (1993). Benchmarks for science literacy. Project 2061. New York: Oxford University Press.
  • AAAS (1998). Blueprints for reform. Project 2061. New York: Oxford University Press.
  • AAAS (2001). Atlas of science literacy. AAAS Project 2061. 
  • Abd-El-Khalick, F. (2012). Examining the sources for our understandings about science: Enduring conflations and critical issues in research on nature of science in science education. International Journal of Science Education, 34, 3, 353–374.
  • Abd-El-Khalick, F.S., Bell, R.L. & Lederman, N.G. (1998). The Nature of Science and Instructional Practice: Making the Unnatural Natural, Science Education,  82, 417–436. 
  • Abd-el-Khalick, F.S., & Lederman, N.G.  (2000). Improving science teachers' conceptions of nature of science: a critical review of the literature. International journal of science education, 22, 7, 665-701.
  • Aguirre, J. M., Haggerty, S. M., & Linder, C. J. (1990). Student teachers` conceptions of science, teaching and learning: A case study in pre-service teacher education. International journal of science education, 12, 381-390.
  • Allchin, D. (2011). Evaluating Knowledge of the Nature of (Whole) Science. Science Education,  95, 918-942.
  • Ault, C.R., Jr. & Dodick, J. (2010). Tracking the footprints puzzle: The problematic persistence of science-as-process in teaching the nature and culture of science. Science education, 94, 6, 1092-1122.
  • Bell, R.L. (2009). Teaching the nature of science. Three critical questions. National Geographic (Best practices in science education monograph). Carmel, CA : National Geographic School Publishing.
  • Blackawton, P.S. et al. (2011), Blackawton bees. Biology Letters, 7, 2, 168-172.
  • Brickhouse, N. (1989). Teachers' beliefs about the nature of science and their relationship to classroom practice. Journal of Teacher Education, 41, 53–62. 
  • Bybee, R. (1997). Achieving Scientific Literacy: From Purposes to Practices. Portsmouth, NH: Heinemann Educational Books.
  • Chinn, C.A. & Malhotra, B.A. (2002). Epistemologically authentic reasoning in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175-218.
  • Cole, K.C. (1986). Things your teacher never told you about science: Nine shocking revelations. The Newsday Magazine, March 23, 21-27.
  • Conant, J. (1957). Harvard case histories in experimental science. Cambridge, MA: Harvard University Press.
  • Crowther, T.H., Lederman, N.G. & Lederman, G.S. (2005). Just do it? The impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40, 487-509.
  • DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of research in science teaching, 37, 6, 582-601.
  • Develay, M. (1989). Sur la méthode expérimentale. Aster, 8, 4-16. 
  • Dillon, J. (2009). On Scientific Literacy and Curriculum Reform. International Journal of Environmental & Science Education,  4, 3, 201-2013.
  • Duschl, R.A. (1990). Restructuring Science Education: The Importance of Theories and Their Development, Teachers College Press, New York.
  • Duschl, R.A. (2000). Making the nature of science explicit. In R. Millar, J. Leech, & J. Osborne (Eds.), Improving science education: The contribution of research. Philadelphia, PA: Open University Press.
  • Duschl, R.A. & Grandy, R. (Eds.). (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam: Sense Publishers.
  • Duschl, R. A. & Grandy, R. (2012). Two views about explicitly teaching nature of science. Science & Education, 1-31.
  • Edwards v. Aguillard, 482 U.S. 578 (1987).
  • Flick, L. & Lederman, N. (eds.) (2004). Scientific inquiry and nature of science. Implications for teaching, learning, and teacher education. The Netherlands : Kluwer Academic Publisher.
  • Ford, M. (2008). 'Grasp of practice' as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17, 147–177.
  • Gould, S.J. (1988). The case of the creeping fox terrier clone. Natural History, 96, 1, 16-24.
  • Harlen, W. (2001). Primary science : Taking the plunge. Portsmouth, NH: Heinemann.
  • Harlen, W. (ed.) (2010). Principles and big ideas of science education. Hatfield: ASE.
  • Harlen, W. & Qualter, A. (2009). The teaching of science in primary schools. London : David Fulton Publishers.
  • Hazen, R.M. & Trefil, J. (2009). Science matters: Achieving scientific literacy. New York : Anchor Books.
  • Horner, J. K. & Rubba, P.A. (1978). The Myth of Absolute Truth, The Science Teacher, 45, 29–30.
  • Horner, J.K. & Rubba, P.A. (1979). The Laws Are Mature Theories Fable, The Science Teacher, 45, 31.
  • Keeslar, O. (1945). The elements of scientific method. Science education, 29, 273-278.
  • Klopfer, L.E. (1969), The teaching of science and the history of science. Journal of research on science teaching, 6, 87–95.
  • Klopfer, L., & Cooley, W. (1961). Test on understanding science. Princenton, NJ: Educational Testing Service.
  • Lederman, N.G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of research in science teaching, 29, 4, 331-359.
  • Lederman, N. G. (1999). Teachers’ understanding of the nature of science and classroom practice: Factors that facilitate or impede the relationship. Journal of Research in Science Teaching, 36, 916–929.
  • Lederman, N.G. (2006). Research on nature of science: reflections on the past, anticipations of the future. Asia-Pacific Forum on Science Learning and Teaching, 7, 1, 2.
  • Lederman, N., & Abd-El-Khalick, F. (1998). Avoiding de-natured science: Activities that promote understandings of the nature of science. In W. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 83–126). Dordrecht: Kluwer.
  • Lederman, N., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Towards valid and meaningful assessment of learners’ conceptions of the nature of science. Journal of Research in Science Teaching, 39, 6, 497–521.
  • Lederman, N. G., Schwartz, R., Abd-El-Khalick, F., & Bell, R. L. (2001). Preservice teachers’ under- standing and teaching of nature of science: An intervention study. Canadian Journal of Science, Mathematics and Technology Education, 1, 2, 135–160.
  • Mathews, M. R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.
  • McComas, W.F. (1996). Ten Myths of Science; Reexamining What We Think We Know About the Nature of Science. School Science and Mathematics, 96, 1, 10-16.
  • McComas, W.F. (1998). The Nature of Science in Science Education: Rationales and Strategies. Boston: Kluwer Academic Publishers.
  • McComas, W.F. (2002).  Science and its myths. In M. Shermer (Ed.), The Skeptics encyclopedia of pseudoscience, pp. 430-442.  Santa Barbara, CA: ABC CLIO Press.  Also published as The Principle Elements of the Nature of Science: Dispelling the Myths in the California Journal of Science Education (2005) 5, 2, 37-67.
  • McComas, W.F. (2004). Keys to teaching the nature of science. The science teacher, 21-24.
  • Medawar, P.B. (1963). Is the scientific paper a fraud ? In : P.B. Medawar, The great and the glory, pp.228-233. New York : Harper Collins.
  • Miller, J.D. (2004). Public understanding of, and attitudes toward, scientific research: What we know, and what we need to know, Public understanding of science,  13, 3, 273-294.
  • NRC (1996). National Science Education Standards. Washington, DC: National Academies Press.
  • NRC (1999). Selecting Instructional Materials: A Guide for K-12 Science. Washington, DC: The National Academies Press.
  • NSTA (2000). NSTA Position Statements: The Nature of Science.
  • OECD (2001). Connaissances et compétences : des atouts pour la vie. Paris : OCDE Publishing. 
  • Osborne, J.F. (2003). Attitudes towards science : a review of the literature and its implications. International Journal of Science education, 25, 9, 1049-1079.
  • Osborne, J.F. (2007). Science education for the Twenty first century. Eurasia journal of Mathematics, science, and technology education, 3, 3, 173-184.
  • Osborne, J.FCollins, S., Ratcliffe, M., Millar, R., Duschl, R.. (2003). What ‘ideas-about-science’ should be taught in school science? A delphi study of the ‘Expert’ community. Journal of Research in Science Teaching, 40, 7, 692–720.
  • Osborne, J.F., Duschl, R., & Fairbrother, R. (2002). Breaking the mould: Teaching science for public understanding. Nuffield Foundation.  
  • Roth, W.-M. & Barton, A.C. (2004). Rethinking scientific literacy. New York: Routledge.
  • Rothman, M. A. (1992). The science gap. Buffalo: Prometheus Books.
  • Sandoval, W.A. & Morrison, K. (2003). High school students' ideas about theories and theory change after a biological inquiry unit. Journal of research in science teaching,  40, 4, 369-392.
  • Van Dijk, E.M. (2011). Portraying real science in science communication.  Science education, 95, 6, 1086-1100.
  • Wilson, L. L. (1954). A study of opinions related to the nature of science and its purpose in society. Science education, 38, 159–164.
  • Windschitl, M. (2004). Folk theories of “inquiry:” How preservice teachers reproduce the discourse and practices of an atheoretical scientific method. Science teaching,  41, 5, 481–512.
Strategies for teaching the nature of science
  • AAVV (2004). Feynman, le génie magicien. Pour la science, 19, mai-août.
  • Abd-el-Khalick, F.S., & Lederman, N.G.  (2000). Improving science teachers' conceptions of nature of science: a critical review of the literature. International journal of science education, 22, 7, 665-701.
  • Bachelard, G. (1934). Le Nouvel Esprit scientifique. Paris: Éditions Alcan.
  • Bachelard, G. (1938). La Formation de l'esprit scientifique. Contribution à une psychanalyse de la connaissance objective. Paris: Éditions Vrin.
  • Dawkins, R. (2008). The Oxford book of modern science writing. Oxford: Oxford University Press. 
  • Edwards v. Aguillard, 482 U.S. 578 (1987).
  • Feynman, R.P. (1988). What Do You Care What Other People Think? Further Adventures of a Curious Character. New York: W. W. Norton & Co.
  • Feynman, R.P. (1999). The Meaning of It All: Thoughts of a Citizen Scientist, Perseus Books Publishing.
  • Feynman, R.P. (2000). Entretien avec Richard Feynman. Le savant, le génie et la fantaisie. La Recherche, 99. http://www.larecherche.fr/actualite/aussi/entretien-richard-feynman-savant-genie-fantaisie-texte-01-05-2000-77948
  • Feynman, R. (2007). The Pleasure of Finding Things Out: The Best Short Works of Richard P. Feynman. Perseus Books Publishing.
  • Feynman, R.P. (2010). Surely You're Joking, Mr. Feynman! Adventures of a Curious Character. New York: W. W. Norton & Co.
  • Lederman, N.G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of research in science teaching, 29, 4, 331-359.
  •  Lederman, N., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Towards valid and meaningful assessment of learners’ conceptions of the nature of science. Journal of Research in Science Teaching, 39, 6, 497–521.
  • McComas, W.F. (1996). Ten Myths of Science; Reexamining What We Think We Know About the Nature of Science. School Science and Mathematics, 96, 1, 10-16.
  • McComas, W. (1998). The Nature of Science in Science Education: Rationales and Strategies. Boston: Kluwer Academic Publishers.
  • McComas, W.F. & Olson, J. (1998). The nature of science in international science education standards documents. In W.F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 83–126). Dordrecht: Kluwer.
  • NRC (2012). A framework for K-12 science education. Washington, DC: National Academies Press. 
  • NRC (2013). Next generation science standards. Washington, DC: National Academies Press. 
  • Osborne, J.F., Collins, S., Ratcliffe, M., Millar, R., Duschl, R.. (2003). What ‘ideas-about-science’ should be taught in school science? A delphi study of the ‘Expert’ community. Journal of Research in Science Teaching, 40, 7, 692–720.
  • Pigliucci, M. (2010).  Nonsense on stilts : How to tell science from bunk. Chicago : University of Chicago Press. 
  • Rothman, M. A. (1992). The science gap. Buffalo: Prometheus Books.
  • Sagan, C. (1996). The demon haunted world : Science as a candle in the dark. New York : Random House. 
  • Smith, M., Lederman, N.G., Bell, R., McComas, W.F., & Clough, M. (1997). How great is the disagreement about the nature of science: A response to Alters. Journal of Research in Science Teaching, 34, 1101–1103.
  • Wolpert, L., & Richards, A. (1988). A Passion for Science. Oxford, England: Oxford University Press.
Naturalizing the nature of science
  • Barnes, B., Bloor, D., Henry, J.  (1996). Scientific knowledge: A sociological analysis. Chicago, IL: University of Chicago Press.
  • Bechtel, W. (1988). Philosophy of science: An overview for cognitive science. Hillsdale, NJ: Erlbaum.
  • Carruthers, P., Stich, S., Siegal, M. (2002). The cognitive basis of science. Cambridge : Cambridge University Press. 
  • Cayley, D. (2009). Ideas on the nature of science. Toronto : Goose Lane Editions. 
  • Dunbar, K. (1993). Concept discovery in a scientific domain. Cognitive Science, 17, 397-434.
  • Dunbar, K. (1995). How scientists really reason: Scientific reasoning in
  • real-world laboratories. In R.J. Sternberg & J. Davidson (Eds.), Mechanisms of Insight. Cambridge, MA: MIT Press.
  • Dunbar, K. (2001). Scientific Thinking and its Development. In: R.A. Wilson,  F.C. Keil (eds.),  MIT Encyclopedia of the Cognitive Sciences (MITECS), Cambridge, MA: MIT Press. 
  • Dunbar, K. (2002). Understanding the role of cognition in science: The science as category framework. In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press.
  • Dunbar, K. & Klahr, D. (1989). Developmental differences in scientific discovery strategies. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 109–143). Hillsdale, NJ: Lawrence Erlbaum.
  • Duschl, R.A. & Grandy, R. (Eds.). (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam: Sense Publishers.
  • Duschl, R. A. & Grandy, R. (2012). Two views about explicitly teaching nature of science. Science & Education, 1-31.
  • Feist, G.J. (2006). The Psychology of Science and the Origins of the Scientific Mind. New Haven, CT: Yale University Press.
  • Feist, G.J. & Gorman, M.E. (Eds.) (2013). Handbook of the Psychology of Science. New York: Springer Publishing. 
  • Giere, R. (1988). Explaining science. Chicago/London : The University of Chigago Press.
  • Giere, R. (Ed.) (1992). Cognitive Models of Science. Minnesota studies in the Philosophy of Science. Minneapolis, MN: University of Minnesota Press. 
  • Giere, R. (2002). Scientific cognition and distributed cognition. In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press.
  • Giere, R. (2003). A new program for philosophy of science ? Philosophy of science, 70, 1, 15-21.
  • Klahr, D. (2009) “To every thing there is a season, and a time to every purpose under the heavens”: What about Direct Instruction? In S. Tobias and T. M. Duffy (Eds.) Constructivist Theory Applied to Instruction: Success or Failure? London: Taylor and Francis.
  • Klahr, D. & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1, 1-55.
  • Klahr, D., Fay, A., & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25, 111–146.
  • Klahr, D. & Li, J. (2005).  Cognitive Research and Elementary Science Instruction: From the laboratory, to the classroom, and back. Journal of Science Education and Technology, 4, 2, 217-238.
  • Klahr, D. & Simon, H. A. (1999).  Studies of Scientific Discovery: Complementary Approaches and Convergent Findings. Psychological Bulletin, 125, 5, 524-543. 
  • Klahr, D., & Simon, H. A. (2001). What have psychologists (and others) discovered about the process of scientific discovery? Current directions in psychological science, 10, 3, 75-79.
  • Knorr-Cetina, K. (1981). The Manufacture of Knowledge: An Essay on the Constructivist and Contextual Nature of Science. Oxford: Pergamon Press. 
  • Kuhn, D. (2001). How do people know? Psychological Science, 12, 1–8.
  • Kuhn, D. (2003). Understanding and valuing knowing as developmental goals. Liberal Education, 89, 3,  16-21.
  • Kuhn, D., Cheney, R., & Weinstock, M. (2000). The development of epistemological understanding. Cognitive Development,  15, 309-328.
  • Kuhn, D. & Park, S. H. (2005). Epistemological understanding and development of intellectual values. International Journal of Educational Research, 43, 3, 111-124. 
  • Kulkarni, D., & Simon, H.A. (1990). Experimentation in machine discovery. In J. Shrager and P. Langley (Eds.), Computational models of scientific discovery and theory formation. San Mateo, CA: Morgan Kaufmann Publihsers, Inc.
  • Langley, P., Simon, H.A., Bradshaw, G.L., & Zytkow, J.M. (1987). Scientific Discovery: Computational Explorations of the Creative Processes. Cambridge, MA: MIT Press. 
  • Latour, B. (1987). Science in Action: How to Follow Scientists and Engineers Through Society, Cambridge, MA: Harvard University Press.
  • Latour, B. & Woolgar, S. (1986). Laboratory Life: The Social Construction of Scientific Facts. Princeton, NJ: Princeton University Press.
  • Li, J. & Klahr, D. (2006). The Psychology of Scientific Thinking: Implications for Science Teaching and Learning. In J. Rhoton & P. Shane (Eds.) Teaching Science in the 21stCentury. Arlington, VA: NSTA Press.
  • Nersessian, N.J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (ed.) Cognitive Models of Science. University of Minnesota Press. Minneapolis.
  • Nersessian, N.J. (1998). Conceptual change. In Bechtel, W. & Graham, G. (eds.) A Companion to Cognitive Science. Blackwell, Malden, MA. 155-166.
  • Nersessian, N. (2002). The cognitive basis of model-based reasoning in science. In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press. In: Carruthers, P, Stich, S., Siegal, M. (eds.). The cognitive basis of science. Cambridge: Cambridge University Press.
  • Nersessian, N.J. (2008) Creating Scientific Concepts. Cambridge, MA: MIT Press.
  • Shapin, S. & Shaffer, S. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life. Princeton, NJ : Princepton University Press.  
  • Thagard, P. (1992). Conceptual revolutions. Princeton, NJ : Princeton University Press.
  • Thagard, P. (2013). The cognitive science of science: Explanation, Discovery, and Conceptual change. Cambridge, MA: MIT Press.
  • Tweney, R.D.  (1993). Steps toward a cognitive science of science (interview with R.D. Tweney). In W. Callebaut, Taking the naturalistic turn, Or, How the new philosophy of science is done, pp. 341-349. Chicago: University of Chicago Press.
  • Tweney, R.D., Doherty, M.E, Mynatt, C.R (Eds.) (1981). On scientific thinking. New York: Columbia University Press.
Teaching science for critical thinking
  • Ananiadou, K., & Claro, M. (2009). 21st century skills and competences for New Millennium Learners in OECD countries. Paris : Centre for Educational Research and Innovation (CERI) – OECD.
  • Bailin, S. (2002). Critical thinking and science education. Science & Education, 11(4), 361–375.
  • Dewey, J. (1910). How we think. New York: D.C Heath & Co. Publishing.
  • Holbrook, J. & Rannikmäe, M. (2009). The Meaning of Scientific Literacy. International Journal of Environmental and Science Education, 4, 275 - 288.
  • MEN (2013). Les programmes de l’école élémentaire. http://www.education.gouv.fr/cid38/horaires-et-programmes.html
  • MEN-DEPP (2011). Les compétences des élèves en sciences expérimentales en fin d'école primaire. Note d’information – DEPP – N° 11.05.
  • MEN-DEPP (2011). Les compétences des élèves en sciences expérimentales en fin de collège. Note d’information – DEPP – N° 11.06.
  • NRC (1996). National science education standards. Washington, DC: National Academies Press.
  • Pasquinelli, E. (2013). La pensée critique : entre discipline formatrice, enseignement disciplinaire et méthode éducative. Quels apport de la part des sciences de la cognition ? In : A. Firode, J.-F. Goubet, H. Vincent, (éds.) (2013). Les disciplines de la pensée. Artois : Artois Presses Université.
  • OECD (2007). PISA 2006. Les competences en sciences un atout pour réussir. Paris: OCDE.
  • Pariser, E. (2011). The Filter Bubble: What the Internet Is Hiding from You. New York, NY: Penguin Press.
  • Shamos, M.H. (1995). The myth of scientific literacy. New Brunswick, NJ : Rutgers University Press.
  • TIMSS (2011). International Science Report. TIMSS & PIRLS International Study Center.
  • Willingham, D. T. (2007). Critical thinking: Why is it so hard to teach? American Educator, 8–19.
Strategies for teaching critical thinking, indirectly
  • Bachelard, G. (1934). Le Nouvel Esprit scientifique. Paris: Éditions Alcan.
  • Bachelard, G. (1938). La Formation de l'esprit scientifique Contribution à une psychanalyse de la connaissance objective. Paris: Éditions Vrin.
  • Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? Psychological Bulletin, 128, 612–637.
  • Bavelier, D., Green, C.S., & Dye, M. (2010). Children, wired - for better and for worse. Neuron, 67, 692-701.
  • Bransford, J.D., Brown, A.L., & Cocking, R.R. (2000). How people learn: brain, mind, experience, and school. Washington, D.C.: National Academies Press.
  • Bransford, J.D., & Schwartz, D.L. (1999). Rethinking transfer: A simple proposal with multiple implications. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of Research in Education, 24, 61-101. Washington DC: American Educational Research Association.
  • Chi, M.T.H. (1978). Knowledge structures and memory development. In R. Siegler (Ed.), Children's thinking: What develops? (pp. 73-96). Hillsdale, NJ: Erlbaum. Reprinted in: Wozniak, R. H. (1993) Worlds of Childhood, (pp. 232-240); New York: Harper Collins College Publishers.
  • Ericsson, K.A. & Chase, W.G. (1982). Exceptional memory. American Scientist, 70, 607–615.
  • Feynman, R.P. (2005). Perfectly reasonable deviations from the beaten track. The letters of Richard P. Feynman. New York: Basic Books.
  • Firode, A., Goubet, J.-F., Vincent, H. (éds.) (2013). Les disciplines de la pensée. Artois : Artois Presses Université.
  • Gabennesch, H. (2006). Critical thinking. What is it good for? Skeptical Inquirer, 30.2.
  • Goode, E. (2002). Education, scientific knowledge and belief in the paranormal. Skeptical inquirer, 1-2, 24-27.
  • Green, C.S. & Bavelier, D. (2008). Exercising your brain: A review of human brain plasticity and training-induced learning. Psychology and Aging, 23, 4,  692-701.
  • Gorski, D. (2012). Luc Montagnier and the Nobel disease. Science-based medicine. http://www.sciencebasedmedicine.org/luc-montagnier-and-the-nobel-disease/
  • Johnson, M. & Pigliucci, M. 2004. Is knowledge of science associated with higher skepticism of pseudoscientific claims? American Biology Teacher, 66, 536-548.
  • Jungwirth, E., & Dreyfus. A. (1990). Diagnosing the attainment of basic enquiry skills: The 100-year old quest for critical thinking. Journal of Biological Education, 24, 1, 42-49.
  • Lilienfeld, S. O., Lohr, J. M., & Morier, D. (2001). The teaching of courses in the science and pseudoscience of psychology. Useful resources. Teaching of Psychology, 28, 3, 182-191.
  • Maguire, E.A. Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R. S.J., Frith, C.D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. PNAS, 97, 4398–4403.
  • Maguire, E.A., Valentine, E.R., Wilding, J.M., Kapur, N. (2003). Routes to remembering: the brains behind superior memory. Nature neuroscience, 6, 1, 90-95.
  • Novick, L. R. & Holyoak, K. J. (1991). Mathematical problem solving by analogy. Journal of experimental psychology: Learning, memory, and cognition, 17, 398-415.
  • Owen, A.M. (2010). Putting brain training on the test. Nature, 465, 7299, 775-778.
  • Pagel, M. (2012). Wired for Culture: Origins of the Human Social Mind. New York: W. W. Norton & Company.
  • Pagel, M. (2011). Infinite stupidity. Edge. http://edge.org/conversation/infinite-stupidity-edge-conversation-with-mark-pagel
  • Pasquinelli, E. (2012). Neuromyths: why do they exist and persist? Mind, Brain, and Education, 6, 2, 89-96.
  • Pigliucci, M. (2007). The evolution-creation wars: why teaching more science just is not enough. McGill Journal of education, 42, 2, 286-306.
  • Posner, M.I. & Rothbart, M.K. (2004). Educating the human brain. Washington, DC: APA Books.
  • Reeves, L. M. & Weisberg, R. W. (1994). The role of content and abstract information in analogical transfer. Psychological Bulletin,  115 , 3, 381-400.
  • Royer, J. M., Mestre, J. P., & Dufresne, R. J. (2005). Introduction. Framing the transfer problem. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective, pp. vii-xiv. Washington, DC: Information Age Publishing.
  • Sagan, C. (1995). Wonder and skepticism. Skeptical Inquirer, 19.1.
  • Sagan, C. (1996). The demon haunted world : Science as a candle in the dark. New York : Random House.
  • Schwartz, D. L., Bransford, J. D. & Sears, D. (2005). Efficiency and innovation in transfer. In: J. Mestre, Transfer of Learning from a modern multidisciplinary perspective (pp. 1-51). Greenwich, CT: Information Age Publishing.
  • Standing, L. G., & Huber, H. (2003). Do psychology courses reduce belief in psychological myths? Social Behavior and Personality, 31, 585-592.
  • Thorndike, E. L. & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247-261.
  • Walker, W.R., Hoekstra, S.J., & Vogl, R.J. (2002). Science education is no guarantee of skepticism. Skeptic, 9, 24-27.
Strategies for teaching critical thinking, directly
  • Bailin, S. (2002). Critical thinking and science education. Science & Education, 11(4), 361–375.
  • Bailin, S., Case, R., Coombs, J.R., & Daniels, L.B. (1999). Conceptualizing critical thinking. Journal of Curriculum Studies, 31(3), 285–302.
  • Bailin, S., Case, R., Coombs, J., & Daniels, L. (1999). Common Misconceptions of Critical Thinking. Journal of Curriculum Studies, 31, 3, 269–283.Baron, J. (2000). Thinking and Deciding, Cambridge, UK: Cambridge University Press.
  • Block, R.A. (1985). Education and thinking skills reconsidered. American psychologist, 40, 574-575.
  • Bransford, J.D., Brown, A.L., & Cocking, R.R. (2000). How people learn: brain, mind, experience, and school. Washington, D.C.: National Academies Press.
  • Bransford, J.D., & Schwartz, D.L. (1999). Rethinking transfer: A simple proposal with multiple implications. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of Research in Education, 24, 61-101. Washington DC: American Educational Research Association.
  • Bruer, J. T. (1993). Schools for thought. Cambridge, MA: MIT Press.
  • Chase, W.G. & Simon, Herbert A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.
  • Chi, M.T.,  Feltovich, P.J.,  Glaser, R. (1981). Categorization and representation of physics problems by experts and novices". Cognitive Science,  5, 2,  121–152.
  • Cosmides, L. & Tooby, J. (n.d.). Evolutionary psychology : A primer. Center for evolutionary psychology. http://homes.ieu.edu.tr/hcetinkaya/EvPsychPrimer.pdf
  •  Covington, M.V., Crutchfield, R.S., Davies, L.B., & Olton, R.M. (1974). The Productive Thinking Program: A course in learning to think. Columbus, OH: Merrill.
  • Crow, L.W. (ed.) (1989), Enhancing Critical Thinking in the Sciences. Arlington, VA: NSTA.
  • De Bono, E. (1982). Thinking course. New York : Crown Publishing.
  • De Bono, E. (1985). Six thinking hats. Boston : Little Brown and Company.
  • deGroot, A. (1965). Thought and choice in chess. The Hague : Mouton.
  • Ennis, R. H. (1985). A logical basis for measuring critical thinking skills. Educational Leadership, 43(2), 44–48.
  • Ennis, R.H. (1989). Critical thinking and subject specificity: Clarification and needed research. Educational Researcher, 18, 3, 4-10.  
  • Ennis, R.H. (1996). Critical thinking. Upper Saddle River, NJ: Prentice-Hall.
  • Evans, J. St. B. T. (1993). Bias and rationality. In: K.I. Mantkelow & D. E. Over (eds.), Rationality, pp. 6-30. London: Routledge. Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Millbrae, CA: The California Academic Press.
  • Facione, P. A. (1991). Using the California critical thinking skills test in research, evaluation, and assessment. Millbrae, CA: The California Academic Press.
  • Facione, P.A., Facione, N.C., Giancarlo, C.A. (2000). The disposition toward critical thinking: its character, measurement, and relationship to critical thinking skills. Informal Logic, 20, 1, 61-84.
  • Feuerstein, R. (1980). Instrumental Enrichment: An intervention program for cognitive modifiability. In collaboration with Y. Rand, M.B. Hoffman, & R. Miller. Baltimore, MD: University Park Press.
  • Fong, G.T., Kranz, D.H., Nisbett, R.E. (1986). The effects of statistical training in thinking about everyday problems. Cognitive psychology, 18, 253-292.
  • Fox, L.S., Marsh, G., & Crandall, J.C., Jr. (1983). The effect of college classroom experiences on formal operational thinking. Paper presented at the Annual convention of the Western psychological association, San Francisco.
  • Gabennesch, H. (2006). Critical thinking. What is it good for? Skeptical Inquirer, 30.2.
  • Gilovich, T. (1991). How we know what isn't so: The fallibility of human reason in everyday life. New York: The Free Press.
  • Glaser, E. (1941). An Experiment in the Development of Critical Thinking. New York, Bureau of Publications, Teachers College, Columbia University.
  • Halpern, D. (2002). Thought and knowledge : An introduction to critical thinking. Hove: Psychology Press.
  • Halpern, D. F. & Riggio, H. (2003). Thinking critically about critical thinking. Mahwah, NJ: Lawrence Erlbaum Associates, Inc. Publishers.
  • Herrnstein, R.J., Nickerson, R.S., de Sanchez, M., & Swets, J.A. (1986). Teaching thinking skills. American Psychologist, 41, 11, 1279-1289.
  • Kronholm, M. M. (1993). The impact of developmental instruction on Reflective Judgment. Review of Higher Education, 19, 199-255.
  • Jepson, C., Krantz, D.H., & Nisbett, R.E. (1993). Inductive reasoning: Competence or skill? In R. E. Nisbett (Ed.), Rules for reasoning, pp. 70-89. Hillsdale, NJ: Lawrence Erlbaum.
  • Lai, E.R. (2011). Critical thinking. A literature review. Research report : Pearson.
  • Lehman, D.R., Lempert, R.O., Nisbett, R.E. (1988). The effects of graduate training on reasoning : Formal discipline and thinking about everyday-life events. American psychologist, 43, 431-442.
  • Leming, J. (1998). Some critical thoughts about the teaching of critical thinking. The social studies, 89, 2, 61-66.
  • Lipman, M. (1974). Harry Stottlemeier's Discovery. N.J.: IAPC.
  • McPeck, J. (1981). Critical Thinking and Education. New York: St. Martin's Press.
  • McPeck, J. (1990). Critical Thinking and Subject Specificity; A Reply to Ennis, Educational Researcher, 19, 10–12.
  • Nisbett (Ed.) (1993). Rules for reasoning. Hillsdale, NJ: Lawrence Erlbaum.
  • Palincsar, A. S. & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 2, 117-175.
  • Paul, R. (1982). Teaching critical thinking in the strong sense: a focus on self-deception, world views, and a dialectical mode of analysis. Informal logic, 4, 3-7.
  • Paul, R. (1990). Critical Thinking: What Every Person Needs to Survive in a Rapidly Changing World, Center for Critical Thinking and Moral Critique, Rohnert Park, California.
  • Paul, R., Elder, L., & Bartell, T. (1997). California Teacher Preparation for Instruction in Critical Thinking: Research Findings and Policy Recommendations. Sacramento (CA): State of California, California Commission on Teacher Credentialing.
  • Resnick, L. (1987). Education and learning to think. Washington, DC: National Academies Press.
  • Schauble, L., Glaser, R., Raghavan, K., & Reiner, M. (1991). Causal models and experimentation strategies in scientific reasoning. Journal of the Learning Sciences, 1, 201-238.
  • Sternberg, R., Roediger, R., & Halpern, D. F. (Eds.). (2007). Critical Thinking in Psychology. Cambridge, MA: Cambridge University Press.
  • Van Gelder, T. (2005). Teaching critical thinking: Some lessons from cognitive science. College Teaching, 53, 1, 41–48.
  • Wason, P.C. (1966). Reasoning. In: Foss, B. M., New horizons in psychology. Harmondsworth: Penguin.
  • Whitehead, A. N. (1929).  The Aims of Education and Other Essays.  New York: Free Press.
  • Willingham, D.T. (2006). How knowledge helps. American Educator, Spring, 30-37.
  • Willingham, D.T. (2007). Critical thinking: Why is it so hard to teach? American Educator, 8–19.
  • Willingham, D.T. (2009). Why Don’t Students Like School: Because the mind is not designed for thinking. American Educator, Spring, 4-13.
  • Willingham, D.T. (2010). Why children don’t like school ? New York : Jossey Bass.
Critical thinking as expertise and vigilance
  • Bailin, S. (2002). Critical thinking and science education. Science & Education, 11(4), 361–375.
  • Ericcson, A.K. & Charness, N. (1994). Expert performance: Its structure and acquisition. American Psychologist, 49, 8, 725-747.
  • Ericsson, A.K., Charness, N., Feltovich, P., Hoffman, R.R. (2006). Cambridge handbook on expertise and expert performance. Cambridge, UK: Cambridge University Press.
  • Ericsson, A.K.,  Prietula, M.J.,  Cokely, E.T. (2007). The making of an expert. Harvard Business Review.
  • Evidence-Based Medicine Working Group (1992). Evidence-Based Medicine: A New Approach to Teaching the Practice of Medicine. Evidence-Based Medicine Working Group. JAMA, 268, 17, 2420-2425.
  • Goldman, A. (1999). Knowledge in a social world. Oxford : Oxford University Press.
  • Lilienfeld, S. O., Lohr, J. M., & Morier, D. (2001). The teaching of courses in the science and pseudoscience of psychology. Useful resources. Teaching of Psychology, 28, 3, 182-191.
  • Resnick, L. (1987). Education and learning to think. Washington, DC: National Academies Press.
  • Sperber, D., Clément, F., Heintz, C., Mascaro, O., Mercier, H., Origgi, G., Wilson, D. (2010). Epistemic vigilance. Mind & Language, 25, 359–393.
  • Van Gelder, T. (2005). Teaching critical thinking: Some lessons from cognitive science. College Teaching, 53, 1, 41–48.
  • Willingham, D. T. (2007). Critical thinking: Why is it so hard to teach? American Educator, 8–19.


No comments: